
Counting Cohesive Subgraphs with Hereditary Properties
Rong-Hua Li

Beijing Institute of Technology
Beijing, China

lironghuabit@126.com

Xiaowei Ye
Beijing Institute of Technology

Beijing, China
yexiaowei@bit.edu.cn

Fusheng Jin
Beijing Institute of Technology

Beijing, China
jfs21cn@bit.edu.cn

Yu-Ping Wang
Beijing Institute of Technology

Beijing, China
wyp_cs@bit.edu.cn

Ye Yuan
Beijing Institute of Technology

Beijing, China
yuan-ye@bit.edu.cn

Guoren Wang
Beijing Institute of Technology

Beijing, China
wanggrbit@gmail.com

ABSTRACT
The clique model has properties of hereditariness and cohesiveness.
Here hereditary property means a subgraph of a clique is still a
clique. Counting small cliques in a graph is a fundamental operation
of numerous applications. However, the clique model are often too
restrictive for practical use, leading to the focus on other relaxed-
cliques with properties of hereditariness and cohesiveness. To ad-
dress this issue, we investigate a new problem of counting general
hereditary cohesive subgraphs (HCS). All subgraphs with properties
of hereditariness and cohesiveness can be called a kind of HCS.
To count HCS, we propose a general framework called HCSPivot,
which can be applied to count all kinds of HCS. HCSPivot can count
most HCS in a combinatorial manner without explicitly listing them.
Two additional noteworthy features of HCSPivot is its ability to
(1) simultaneously count HCSs of any size and (2) simultaneously
count HCSs for each vertex or each edge. The implementation of
HCSPivot for clique counting is exactly the state-of-the-art clique
counting algorithm PIVOTER [33]. We focus specifically on two
HCS: 𝑠-defective clique and 𝑠-plex. We also propose several non-
trivial pruning techniques to enhance the efficiency. We conduct
extensive experiments on 8 large real-world graphs, and the results
demonstrate the high efficiency and effectiveness of our solutions.

1 INTRODUCTION
Counting small cohesive subgraphs in a graph is a fundamental
problem in graph mining and has a wide range of applications in
various fields, such as community detection, network analysis, and
bioinformatics [18, 51]. Among different types of motifs, clique is
considered as one of the most important motifs due to the perfect
cohesiveness and hereditary properties. Cohesiveness means great
reach-ability between the vertices and hereditary property means
that any induced subgraph of a clique is still a clique. In real-world,
a group often has properties of cohesiveness and hereditary. For
example, a group of friends should have abilities to reach each
other and any subgroups are still friends. Therefore, counting cliques
serves as a basic operator in many applications [7, 40, 53, 59, 60, 71].

However, the constraint of clique is often very strict for real-
world applications because the interaction between members of a
group may not be direct, or there may be missing data in a real-
world system. To overcome this limitation, many relaxed clique
models have been proposed. Notable examples include 𝑠-defective
clique [14, 20, 72], 𝑠-plex [19, 21, 57, 75], 𝑠-clique [41], 𝛾-quasi-
clique [10, 49], 𝑘-core [56], 𝑘-truss [31, 64], and 𝑘-edge connected
subgraph [13, 74]. In this work, we focus mainly on the 𝑠-defective
clique and 𝑠-plex models, since these two models are often close to
a clique and also they maintain both the cohesiveness and hereditary
properties.

Specifically, a graph is an 𝑠-defective clique if there exist at most
𝑠 missing edges compared to cliques. Since the maximum count
of missing edges is restricted, 𝑠-defective clique is typically very
cohesive. The subgraphs of an 𝑠-defective clique are still 𝑠-defective
cliques because the deletion of nodes will not lead to the increas-
ing of missing edges. Different from 𝑠-defective clique, an 𝑠-plex
restricts each vertex has at most 𝑠 missing edges, i.e., has at most
𝑠 non-neighbors. Similar to 𝑠-defective clique, 𝑠-plex also has the
property of hereditary because the deletion of nodes will not lead to
increasing the count of non-neighbors of any vertex.

Instead of counting cliques in a graph, we study a new and more
general problem of counting hereditary cohesive subgraphs (HCSs
in short) in a graph. To address this problem, we develop two gen-
eral counting frameworks which can be applied to counting both
𝑠-defective cliques and 𝑠-plexes. Similar to clique counts, the counts
of HCSs have diverse applications in graph analysis. Below, we
highlight two specific applications.
Motif-based Graph Clustering. Motif-based graph clustering has
been recognized as the state-of-the-art method for detecting real-
world communities in a network [7, 60]. The motif-based graph
clustering method aims to minimize the so-called motif-based con-
ductance, which is an important concept in network analysis whose
definition is mainly based on the count of motifs [7, 60]. Hence,
the key for motif-based graph clustering methods is to compute
the count of motifs. Our experiments show that compared to using
traditional clique counts [7, 60], using the count of HCSs, such as
𝑠-defective clique and 𝑠-plex, can improve the quality of clustering.
This highlights the practical importance of the problem of counting
hereditary cohesive subgraphs.
Network comparison. Comparing the counts of hereditary cohesive
subgraphs across different graphs can aid in network comparison and
similarity analysis. By quantifying the presence and abundance of
these subgraphs, we can measure the structural similarities or differ-
ences between graphs. This enables us to identify graph properties
or patterns that are shared or distinct, contributing to comparative
network analysis and classification tasks. In this work, we define a
new graph profile metric based on the count of HCSs. Our exper-
iments show that such a new metric outperforms existing metrics
in distinguishing different types of networks, suggesting that the
counts of HCSs offer great potential as a novel structural feature for
analyzing complex networks.

Challenges. Although counting HCSs has many practical applica-
tions, it is a challenging task. First, HCSs have a more complex
structure than cliques (the cliques are a subset of HCSs), and the
counts of HCSs are often much larger than that of cliques, making
HCSs harder to enumerate and count. For example, on the Epinion
network, the count of 8-cliques is 4.53 × 108 while the count of
1-defective clique with size 8 is 4.02 × 109 and the count of 1-plex

ar
X

iv
:2

40
5.

04
82

3v
1

 [
cs

.D
S]

 8
 M

ay
 2

02
4

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

with size 8 is 1.95 × 1010. Second, there is no previous work for
counting 𝑠-defective clique and 𝑠-plex. Although there are several
algorithms for counting cliques, they are not suitable for counting
HCSs. This is because the complex structures of HCSs requires new
search strategies, pruning techniques and optimizations that are not
present in the clique counting algorithms. As a result, new algo-
rithms and techniques need to be developed to tackle the challenges
of counting HCSs.

Contributions. To overcome the computation challenges of count-
ing HCSs, we first propose a listing-based backtracking framework,
called HCSList. This framework lists all HCSs only once, and thus
it can also obtain the count. HCSList utilizes the hereditary property
to grow HCSs from small to large through backtracking. Based on
the HCSList framework, we devise two specific algorithms to count
𝑠-defective cliques and 𝑠-plexes respectively. To improve the effi-
ciency of these algorithms, we also develop a 𝑘-core based pruning
technique and an upper bounding technique which can significantly
reduce the unpromising vertices and unnecessary search branches
respectively.

The main limitation of HCSList is that it needs to list all HCSs
which is often intractable for counting relatively-large (e.g., size
> 10) HCSs in large graphs. To overcome this issue, we propose
a novel pivot-based framework, called HCSPivot, which can count
most HCSs in a combinatorial manner without explicitly listing them.
Instead of listing all HCSs with a given size 𝑞, HCSPivot lists large
HCSs (not necessarily maximal) and then counts HCSs with size
𝑞 in each large HCSs using a combinatorial method based on the
hereditary property. To avoid repeatedly counting, HCSPivot makes
use of a carefully-designed pivoting technique which can uniquely
represent each HCS using the large HCSs. Since listing the large
HCSs is much cheaper than listing all HCSs with size 𝑞, HCSPivot
is often tractable to handle large graphs. Moreover, two important
and useful features of HCSPivot are that (1) it can simultaneously
count HCSs of any size, and (2) it can also obtain local count of
HCSs for each vertex or each edge, where the local count of a vertex
(or an edge) means the number of HCSs containing that vertex (or
edge). Based on the HCSPivot framework, we also develop two
specific algorithms with two novel pivot-vertex selection strategies
for counting 𝑠-defective cliques and 𝑠-plexes respectively. The results
of comprehensive experiments demonstrate the high efficiency and
effectiveness of our solutions. In summary, the main contributions
of this work are as follows.
Novel HCS counting frameworks. We propose two novel frameworks
to count HCSs in a graph, namely HCSList and HCSPivot respec-
tively. HCSList counts all HCSs by exhaustively enumerating them
which is efficient when the number of HCSs is not very large.
HCSPivot, however, counts most HCSs in a combinatorial man-
ner without listing them, thus it is typically much more efficient
than HCSList when the number of HCSs is large. Both of these two
frameworks are very general, and they can be easily applied to count
any hereditary cohesive subgraph in a graph. To our knowledge,
we are the first to study the HCS counting problem and provide
systematic and efficient approaches to solve this problem.
New algorithms for 𝑠-defective clique and 𝑠-plex counting. We first
propose two counting algorithms for the 𝑠-defective clique and 𝑠-plex
counting problems based on the proposed HCSList framework. We
also present several non-trivial pruning techniques to boost the effi-
ciency of these algorithms. Then, based on the HCSPivot framework,
we develop another two counting algorithms with two carefully-
designed pivot-vertex selection strategies for counting 𝑠-defective
cliques and 𝑠-plexes respectively.

𝑢𝑢4

𝑢𝑢5

𝑢𝑢3

𝑢𝑢6

𝑢𝑢2

𝑢𝑢1

𝑢𝑢0

(a) An example graph

𝑢𝑢4

𝑢𝑢5

𝑢𝑢3

𝑢𝑢6

𝑢𝑢2

(b) 1-dclique/plex

𝑢𝑢4

𝑢𝑢5

𝑢𝑢6

𝑢𝑢2

𝑢𝑢0

(c) 1-plex

Figure 1: Running example.

Extensive experiments. We conduct comprehensive experiments us-
ing 8 real-world large graphs to evaluate the efficiency of our algo-
rithms. The results show that (1) both HCSList and HCSPivot are
efficient when counting very small HCSs, and HCSPivot is several
orders of magnitude faster than HCSList for counting relatively-large
HCSs. For example, on DBLP (425957 vertices and 2099732 edges),
when 𝑠 = 1 and 𝑞 = 9 (the given size), HCSList takes 162301.4
seconds and 193757.0 seconds to count all 𝑠-defective cliques and
𝑠-plexes respectively. However, with the same parameters, HCSPivot
consumes only 0.1 seconds and 0.2 seconds to count all 𝑠-defective
cliques and 𝑠-plexes respectively, which is around 7 orders of magni-
tude faster than HCSList. (2) For both locally counting in all vertices
(or edges) and simultaneously counting HCSs with size 𝑞 in a given
range, the time costs of HCSPivot are within the same order of mag-
nitude as those for computing the total count of HCSs in a graph with
a given size 𝑞. These results further demonstrate the high efficiency
of our pivot-based solutions.

We also perform extensive experiments to evaluate the effective-
ness of our algorithms through two applications, including motif-
based graph clustering and graph profile based network character-
ization. The results demonstrate that (1) the HCS (including both
𝑠-defective clique and 𝑠-plex) count is very useful for motif-based
graph clustering applications, which is often more effective than
the clique counts, and it can also achieve the state-of-the-art per-
formance for real-world community detection. (2) The HCS based
graph profile is very effective to characterize different types of net-
works, while the state-of-the-art clique based method is often failed
to distinguish various kinds of networks.

For reproducibility purpose, the source code of our work is avail-
able at [39].

2 PRELIMINARIES
Denote by 𝐺 = (𝑉 , 𝐸) an undirected graph where 𝑉 is the set of
vertices and 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. The neighbors of each
vertex 𝑢 ∈ 𝑉 is 𝑁 (𝑢) ≜ {𝑣 | (𝑢, 𝑣) ∈ 𝐸}. The 2-hop neighbors of each
vertex 𝑢 is 𝑁2 (𝑢) ≜ {𝑤 | (𝑢, 𝑣) ∈ 𝐸, (𝑤, 𝑣) ∈ 𝐸, (𝑢,𝑤) ∉ 𝐸}. Given a
graph 𝐺 (𝑉 , 𝐸) and a vertices set 𝑄 ⊆ 𝑉 , define the edges induced
by 𝑄 as 𝐸 (𝑄) ≜ {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑄, 𝑣 ∈ 𝑄}. We use 𝐺 (𝑄) =
(𝑄, 𝐸 (𝑄)) to denote the subgraph induced by 𝑄 . For representation
simplicity, we replace the size |𝑄 | with 𝑞. We define the total missing
edges of𝐺 (𝑄) as𝑚(𝑄) =

(𝑞
2
)
− |𝐸 (𝑄) |, and define the missing edges

of a specific vertex 𝑢 as𝑚(𝑢,𝑄) = |𝑄 \ {𝑢}| − |𝑁 (𝑢) ∩𝑄 |. Note that
|𝑄 \ {𝑢}| = 𝑞 − 1 if 𝑢 ∈ 𝑄 , |𝑄 \ {𝑢}| = 𝑞 otherwise.

A 𝑘-core of 𝐺 is a maximal subgraph in which every vertex
has a degree no less than 𝑘 within the subgraph [56]. The core
number of a vertex 𝑢 denotes the maximum 𝑘 such that there is a
𝑘-core containing 𝑢. The degeneracy ordering of 𝑉 is an ordering
{𝑣1, 𝑣2, ...} such that 𝑣𝑖 has the minimum degree in the subgraph
𝐺 ({𝑣𝑖 , 𝑣𝑖+1, ...}) [45]. A nice property of degeneracy ordering is that
∀𝑖, |𝑁 (𝑣𝑖) ∩ {𝑣𝑖+1, 𝑣𝑖+2, ..}| ≤ 𝛿 , where 𝛿 is the value of degeneracy.
Note that the degeneracy value 𝛿 is equal to the maximum core

Counting Cohesive Subgraphs with Hereditary Properties

number of the vertices in 𝐺 , which is often very small in real-world
networks [12, 25]. In the ordered graph, we define the (2-hop) out-
going neighbors of a vertex 𝑣𝑖 as ®𝑁 (𝑣𝑖) = 𝑁 (𝑣𝑖) ∩ {𝑣𝑖+1, 𝑣𝑖+2, ...}
and ®𝑁2 (𝑣𝑖) = 𝑁2 (𝑣𝑖) ∩ {𝑣𝑖+1, 𝑣𝑖+2, ...}.

Definition 2.1 (Hereditary graph). A graph with property P is
hereditary if all induced subgraphs also meet P.

Definition 2.1 gives the concept of hereditary graphs. Among the
hereditary subgraphs, we are interested in Hereditary Cohesive Sub-
graphs (HCS in short), because cohesive subgraphs are often with
many important practical applications in network analysis [12]. It is
easy to verify that the classic clique subgraph (completed subgraph)
is a kind of HCS, as clique is cohesive and any subgraph of a clique
is also a clique. However, since the strict constraint of clique model,
many relaxed clique models are often used in practical applications.
In this work, we focus mainly on two widely-used relaxed clique
models, 𝑠-defective clique (𝑠-dclique in short) [72] and 𝑠-plex [57],
which also satisfy the hereditary property.

Definition 2.2 (𝑠-dclique [72]). Given a graph 𝐺 and a vertices
set 𝑄 ⊆ 𝑉 , 𝐺 (𝑄) is a 𝑠-dclique if𝑚(𝑄) ≤ 𝑠.

Definition 2.3 (𝑠-plex [57]). Given a graph 𝐺 and a vertices set
𝑄 ⊆ 𝑉 , 𝐺 (𝑄) is a 𝑠-plex if ∀𝑢 ∈ 𝑄,𝑚(𝑢,𝑄) ≤ 𝑠.

It is worth mentioning that Definition 2.3 is slightly different from
the traditional 𝑘-plex definition [57], as we exclude 𝑢 when defining
𝑚(𝑢,𝑄). In essence, the 𝑠-plex is equivalent to the (𝑘 −1)-plex based
on the traditional definition [57].

By Definition 2.2 and Definition 2.3, it is easy to verify that
both 𝑠-dclique and 𝑠-plex satisfy the hereditary property. Note that
clique is a special case of 𝑠-dclique and 𝑠-plex (clique is a 0-dclique
and 0-plex). Both 𝑠-dclique and 𝑠-plex are not naturally cohesive as
clique [57]. However, as suggested in [57], we can easily make them
cohesive by restricting their diameters no larger than 2. Fortunately,
as shown in Lemma 2.4 and Lemma 2.5, very mild conditions can
achieve this goal. Due to the space limits, all missing proofs can be
found in the full version of this paper [39].

LEMMA 2.4. A 𝑠-dclique with size 𝑞 such that 𝑞 − 2 ≥ 𝑠 has
diameter at most 2.

LEMMA 2.5 ([57]). A 𝑠-plex with size 𝑞 that 𝑞 ≥ 2𝑠 + 1 has
diameter at most 2.

For practical applications, the value of 𝑠 is often not very large
(e.g., 𝑠 ≥ 4) [14, 21, 28, 72, 75]. When 𝑠 is large, the 𝑠-dclique and
𝑠-plex are likely to loose their cohesiveness. Thus, the conditions
in Lemma 2.4 and Lemma 2.5 are easy to meet. Note that although
our frameworks and algorithms are designed for the 𝑠-dcliques and
𝑠-plexes that have diameter at most 2, they can be easily extended to
the 𝑠-dcliques and 𝑠-plexes with arbitrary diameters.

For representation simplicity, we use (𝑞, 𝑠)-dclique ((𝑞, 𝑠)-plex) to
represent an 𝑠-dclique (𝑠-plex) with size 𝑞. Clearly, by our definition,
both (𝑞, 𝑠)-dclique and (𝑞, 𝑠)-plex are HCSs. In this paper, we focus
mainly on the problem of counting these two hereditary cohesive
subgraphs in a graph.

Example 2.6. Fig. 1(a) illustrates an example graph 𝐺 . 𝐺 is a
(7, 2)-plex and any subgraph of 𝐺 is a 2-plex. In Fig. 1(b), the
subgraph induced by {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} is both a (5, 1)-dclique and
(5, 1)-plex. The subgraph induced by {𝑢0, 𝑢2, 𝑢4, 𝑢5, 𝑢6} (Fig. 1(c))
is a (5, 1)-plex. It is easy to derive that 𝐺 contains 1 (5, 1)-dclique
and 9 (5, 1)-plexes.

6 8 10 12 14 16 18
Size

106
107
108
109
1010
1011
1012

C
ou
nt

1-dclique
2-dclique
1-plex
2-plex
clique

Figure 2: The counts of different kinds of HCS.

Algorithm 1: HCSList
Input:𝐺 = (𝑉 , 𝐸) , two integers 𝑞 and 𝑠
Output: The count of hereditary cohesive subgraphs.

1 Let𝑉 ′ be ordered by degeneracy ordering {𝑣1, 𝑣2, ...};
2 for 𝑖 = 1 to |𝑉 ′ | do
3 𝐶 ← ®𝑁 (𝑣𝑖) ∪ ®𝑁2 (𝑣𝑖) ;

/* Construct the candidate set */

4 Listing(𝐶, {𝑣𝑖 }) ;
5 Procedure Listing(𝐶,𝑅)
6 if |𝑅 | = 𝑞 − 1 then
7 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑎𝑛𝑠𝑤𝑒𝑟 + |𝐶 |;
8 return;

9 for𝑢 ∈ 𝐶 do
10 𝐶 ← 𝐶 \ {𝑢};
11 𝐶′ ← {𝑣 ∈ 𝐶 |𝑅 ∪ {𝑢} ∪ {𝑣}𝑖𝑠 𝑎𝑛 HCS};

/* Update the candidate set */

12 Listing(𝐶′, 𝑅 ∪ {𝑢}) ;

Problem Statement. Given a graph 𝐺 (𝑉 , 𝐸), parameters 𝑞, 𝑠 and
a kind of HCS ((𝑞, 𝑠)-dclique or (𝑞, 𝑠)-plex), our goal is to exactly
count the number of HCSs in 𝐺 .

Challenges. As discussed in [32, 33, 70], counting the number of
𝑞-cliques in a graph is an immensely challenging problem due to
the exponential explosion in the number of 𝑞-cliques. Compared to
the 𝑞-clique counting problem, the problem of counting the number
of HCSs studied in this work is much more difficult, because the
count of HCS is often orders of magnitude larger than the number
of cliques. For example, the graph in Fig. 1(a) contains only two
4-cliques, while it contains twenty (4, 1)-dcliques and twenty-five
(4, 1)-plexes. Fig. 2 plots the count of 1-dcliques, 1-plexes, 2-plexes
and cliques on the Epinion network (|𝑉 | = 75879, |𝐸 | = 811480). The
counts of 𝑠-dcliques and 𝑠-plexes are orders of magnitude larger than
that of cliques. Moreover, existing approaches for counting 𝑞-cliques
cannot be directly applied to HCS counting due to the increased
complexity and additional constraints associated with HCSs.

3 THE LISTING-BASED SOLUTIONS
In this section, we first propose a general listing-based framework to
count the HCSs. Then, based on this framework, we design specific
algorithms for counting 𝑠-dcliques and 𝑠-plexes, along with some
important carefully-designed pruning techniques.

3.1 A general listing framework HCSList
A simple approach to count HCSs in a graph is to list them. However,
listing all HCSs in a graph can be challenging due to potential over-
lap and a potentially large number of HCSs. To address this problem,
we propose a general backtracking algorithm, called HCSList, which
can enumerates each HCS in a graph exactly once. The key idea of
HCSList is described as follows. Since HCS satisfies the hereditary
property, we can enumerate an HCS starting from a single vertex
and maintaining a set 𝑅 that represents the current sub-HCS. We
then iteratively grow 𝑅 to the desired size, and use a backtracking
technique to list all HCSs.

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

Algorithm 1 gives the details of HCSList. The algorithm first
orders the graph into a degeneracy ordering (line 1), which can be
computed in𝑂 (|𝐸 |) time using the core decomposition algorithm [6].
Based on the degeneracy ordering, the algorithm lists each HCS on
the lowest-rank vertex of HCS using the Listing procedure (lines 2-
4), which can guarantee that each HCS is only enumerated once.
The Listing procedure maintains a candidate set 𝐶 and a sub-HCS 𝑅,
where each vertex in𝐶 can be added into 𝑅 to form a larger sub-HCS.
Initially, for each vertex 𝑣 , Listing sets 𝑅 = {𝑣} and constructs the
candidates set𝐶 for 𝑣 . Note that in this paper, we focus mainly on the
HCS with a diameter less than 3, thus the initial candidate set is a set
of all one-hop and two-hop outgoing neighbors of 𝑣 (line 3). Then,
for each 𝑣 , the Listing procedure lists all HCSs that contains 𝑣 as the
lowest-rank vertex in the next backtracking call (lines 5-12). Line 11
utilizes the hereditary of HCS that 𝑅 ∪ {𝑢} ∪ {𝑣} are contained in an
HCS which means that 𝑅 ∪ {𝑢} ∪ {𝑣} is an HCS itself. Finally, it is
not necessary to enumerate𝐶 when |𝑅 | = 𝑞− 1 because 𝑅∪ {𝑢} is an
HCS for all 𝑢 ∈ 𝐶 (lines 6-8). It is easy to show that HCSList only
enumerates each HCS once, thus the correctness of the algorithm
can be trivially guarantee.

Complexity analysis of HCSList. Theorem 3.1 gives the time and
space complexity analysis of Algorithm 1. Note that for the time
complexity, we mainly analyze the size of the recursion tree of
HCSList, as its time complexity is mainly dominated by the recursion
tree size.

THEOREM 3.1. The time complexity of Algorithm 1 is𝑂 (|𝑉 | 𝛿2!
(𝛿2−𝑞)!𝜏),

and the space complexity of Algorithm 1 is 𝑂 (|𝑉 | + |𝐸 | +𝑞𝛿2), where
𝛿 is the degeneracy of the input graph and 𝜏 is the time consumed in
each tree node of the recursion tree.

Note that HCSList is a general framework. The parameter 𝜏 in
Theorem 3.1 depends on specific HCSs, and we will give detailed
analyses for two HCSs, including 𝑠-dclique and 𝑠-plex, in the fol-
lowing sections. Additionally, when counting 𝑠-dclique and 𝑠-plex
specifically, we need to take into account of the details of design and
implementation. The key is how to design effective prune strategies
to reduce the search space. Below, we propose several effective and
carefully-designed pruning techniques for both 𝑠-dclique and 𝑠-plex
counting based on the HCSList framework.

3.2 Listing-based 𝑠-dclique counting
In order to transform the HCSList framework into an efficient al-
gorithm for counting 𝑠-dcliques, we still need to develop effective
pruning techniques that can enhance efficiency by leveraging the
intrinsic properties of 𝑠-dcliques.

Pruning techniques for 𝑠-dclique counting. Our first pruning tech-
nique is designed to reduce the candidate set 𝐶 before enumeration.
Specifically, we aims to reduce the size of ®𝑁 (𝑣𝑖) ∪ ®𝑁2 (𝑣𝑖). Below,
we presents two useful lemmas which will be used to reduce ®𝑁 (𝑣𝑖)
and ®𝑁2 (𝑣𝑖) respectively.

LEMMA 3.2. For each vertex 𝑢 ∈ ®𝑁 (𝑣𝑖) (𝑣𝑖 is in lines 2-4 of
Algorithm 1), if 𝑢 and 𝑣𝑖 are contained in a (𝑞, 𝑠)-dclique, then we
have | ®𝑁 (𝑢) ∩ ®𝑁 (𝑣𝑖) | ≥ 𝑞 − 𝑠 − 2.

Lemma 3.2 shows that for an 𝑠-dclique with size 𝑞 that contains 𝑣𝑖 ,
the subgraph induced by all the vertices in ®𝑁 (𝑣𝑖) must be a (𝑞−𝑠−2)-
core. As a result, for each 𝑣𝑖 in line 3 of Algorithm 1, we can reduce
®𝑁 (𝑣𝑖) by computing the (𝑞 − 𝑠 − 2)-core on the subgraph induced

by ®𝑁 (𝑣𝑖).

LEMMA 3.3. For each vertex 𝑢 ∈ ®𝑁2 (𝑣𝑖), if 𝑢 and 𝑣𝑖 is contained
in a 𝑠-dclique with size 𝑞, then 𝑢 has at least 𝑞 − 𝑠 − 1 neighbors in
®𝑁 (𝑣𝑖).

By Lemma 3.3, we can further prune the candidate set 𝐶 by
removing the vertices that have less than 𝑞 − 𝑠 − 1 neighbors in the
(𝑞 − 𝑠 − 2)-core of ®𝑁 (𝑣𝑖) from ®𝑁2 (𝑣𝑖).

Our second pruning technique is to eliminate unnecessary branches
of the procedure Listing in advance. However, how do we determine
if a branch of Listing is unnecessary without actually accessing it?
Below, we propose an upper bounding technique to solve this issue.

Assuming the procedure Listing is in the state between line 10 and
line 11 of Algorithm 1, where 𝑢 is already removed from𝐶. We need
to determine whether the following branch (line 12) can be pruned
based on the values of 𝑢, 𝑅, and 𝐶. Let the vertices in 𝑁 (𝑢) ∩𝐶 be
ordered according to the count of non-neighbors in 𝑅, from smallest
to largest, as {𝑣1, 𝑣2, ...}. It follows that 𝑚(𝑣𝑖 , 𝑅) ≤ 𝑚(𝑣𝑖+1, 𝑅). We
can define 𝜔 (𝑢, 𝑅,𝐶) = max𝑖 {

∑
𝑗≤𝑖𝑚(𝑣 𝑗 , 𝑅) ≤ 𝑠 −𝑚(𝑅 ∪ {𝑢})}.

Since {𝑣1, 𝑣2, ...} is ordered, 𝜔 (𝑢, 𝑅,𝐶) is an upper bound on the
number of vertices in 𝑁 (𝑢) ∩𝐶 that can be added into 𝑅 ∪ {𝑢}. With
this information, we can calculate the total upper bound 𝛾𝑑 (𝑢, 𝑅,𝐶)
which can be used to prune the branch in advance if 𝛾𝑑 (𝑢, 𝑅,𝐶) < 𝑞.
Lemma 3.4 provides further details on this process.

LEMMA 3.4. Let 𝛾𝑑 (𝑢, 𝑅,𝐶) = |𝑅 ∪ {𝑢}| + min{𝑠 − 𝑚(𝑅 ∪
{𝑢}),𝑚(𝑢,𝐶)} + 𝜔 (𝑢, 𝑅,𝐶). Then, 𝛾𝑑 (𝑢, 𝑅,𝐶) is an upper bound on
the size of the 𝑠-dclique that the enumeration branch of Algorithm 1
can potentially reach.

It is worth remarking that the work which focused on the maxi-
mum 𝑠-dclique problem [28] also defines an upper bound. However,
their upper bound uses |𝑁 (𝑢) ∩𝐶 | directly instead of our 𝜔 (𝑢, 𝑅,𝐶).
Thus, our upper bound can be deemed as a tighter bound which may
also be more effective than the one defined in [28] for solving the
maximum 𝑠-dclique problem.

Implementations. In the implementation of the 𝑠-dclique counting
algorithm, we maintain an array 𝐴 of size |𝑉 | that 𝐴[𝑣] stores the
value of 𝑚(𝑣, 𝑅). When 𝑢 is added into 𝑅, for each 𝑣 ∈ 𝐶′ \ 𝑁 (𝑢),
𝐴[𝑣] should increase 1. Correspondingly, 𝐴[𝑣] should decrease 1
after the removal of 𝑢 (line 12 of Algorithm 1). Clearly, the mainte-
nance of 𝐴 costs linear time. With the help of the array 𝐴, we can
get the count of non-neighbors of each vertex in constant time.

The computation of the upper bound 𝜔 (𝑢, 𝑅,𝐶) does not really
sort the set 𝑁 (𝑢) ∩𝐶. Instead, we construct a bucket array 𝐵 where
𝐵 [𝑖] is the count of vertices in 𝑁 (𝑢) ∩𝐶 that have 𝑖 non-neighbors
in 𝑅. Based on 𝐵, it is easy to derive that the time complexity of the
computation of 𝜔 (𝑢, 𝑅,𝐶) is only 𝑂 (𝑠).
Time complexity. In the worst case, the number of recursion tree
nodes of the listing-based 𝑠-dclique counting algorithm is consistent
with Theorem 3.1. Theorem 3.5 gives the time complexity of a
specific recursion tree node with candidate set 𝐶.

THEOREM 3.5. The time complexity in each recursion node of
the listing-based 𝑠-dclique counting algorithm is 𝑂 (|𝐶 |2).

In addition, the time cost taken by the candidate set pruning tech-
niques can be dominated by 𝑂 (𝛿 |𝐸 |). This is because in our pruning
technique, we need to construct a subgraph induced by ®𝑁 (𝑣𝑖) for
each 𝑣𝑖 , which takes at most𝑂 (𝛿 |𝐸 |) in total using a technique devel-
oped in [24]. Since the total size of all the neighborhood subgraphs
can be bounded by 𝑂 (𝛿 |𝐸 |), the total time complexity to compute
the (𝑞 − 𝑠 − 2)-cores for all 𝑣𝑖 is 𝑂 (𝛿 |𝐸 |).

Counting Cohesive Subgraphs with Hereditary Properties

3.3 Listing-based 𝑠-plex counting
Similar to 𝑠-dclique, designing an efficient 𝑠-plex counting algorithm
based on Algorithm 1 also needs to design prune techniques.

Pruning techniques for 𝑠-plex counting. Like 𝑠-dclique, we can
also use 𝑘-core based pruning technique to reduce the candidate size
for 𝑠-plex counting. Specifically, we can first compute a (𝑞 − 𝑠 − 2)-
core on the subgraph induced by ®𝑁 (𝑣𝑖) without missing any 𝑠-plex,
based on the results established in [19].

LEMMA 3.6 ([19]). Assume that 𝑢 and 𝑣 are two vertices in a
(𝑞, 𝑠)-plex, then 𝑢 and 𝑣 have at least 𝑞 − 2𝑠 − 2 common neighbors
if (𝑢, 𝑣) is an edge in the graph, and have at least 𝑞 − 2𝑠 common
neighbors otherwise.

With Lemma 3.6, we can remove unpromising vertices from
the candidate set 𝐶 in line 3 of Algorithm 1. Specifically, we first
reduce ®𝑁 (𝑣𝑖) to a (𝑞 − 𝑠 − 2)-core by removing the vertices {𝑢 |𝑢 ∈
®𝑁 (𝑣𝑖), | ®𝑁 (𝑢) ∩ ®𝑁 (𝑣𝑖) | < 𝑞 − 𝑠 − 2}. Then, we delete the vertices in
®𝑁2 (𝑣𝑖) that have degree less than 𝑞−2𝑠 in the (𝑞−𝑠−2)-core. Finally,

we combine the remaining vertices to get the updated candidate set
without losing any (𝑞, 𝑠)-plex.

To reduce the enumeration branches, we also devise an upper
bound on the size of the 𝑠-plex that the current branch can access.
Our upper bound is inspired by [21]. Specifically, when the Listing
procedure is in the state between line 10 and line 11 of Algorithm 1,
we calculate an upper bound which is defined as 𝛾𝑝 (𝑢, 𝑅,𝐶) =

|𝑅 ∪ {𝑢}| + max𝑖 {
∑

𝑗≤𝑖𝑚(𝑣 𝑗 , 𝑅) ≤
∑

𝑣∈𝑅 (𝑠 −𝑚(𝑣, 𝑅))} + min(𝑠 −
𝑚(𝑢, 𝑅),𝑚(𝑢,𝐶)), where {𝑣1, 𝑣2, ...} is the set 𝑁 (𝑢) ∩ 𝐶 ordered
according to 𝑚(𝑣𝑖 , 𝑅). This upper bound contains three parts: (1)
|𝑅 ∪ {𝑢}|, the listed result, (2) max𝑖 {...}, the maximum count of
neighbors of 𝑢, and (3) min(𝑠 −𝑚(𝑢, 𝑅),𝑚(𝑢,𝐶)), the maximum
count of non-neighbors of 𝑢. It is easy to derive that 𝛾𝑝 (𝑢, 𝑅,𝐶) is
valid upper bound. If this upper bound is less than 𝑞, we can prune
the current branch as it will not produce a valid 𝑠-plex.

Implementations. In the implementation of the listing-based 𝑠-plex
counting algorithm, we maintain an array 𝐴𝑠 with size |𝑉 |. For
𝑣 ∈ 𝐶, 𝐴𝑠 [𝑣] is exactly the set of vertices 𝑅 \ 𝑁 (𝑣). Since the count
of the non-neighbors of 𝑣 is at most 𝑠, 𝐴𝑠 takes at most 𝑂 (𝑠 |𝑉 |)
space. Similar to 𝑠-dclique, the maintenance of 𝐴𝑠 takes 𝑂 (|𝐶 |) time
for each 𝑢 ∈ 𝐶. Specifically, 𝑢 should be inserted into 𝐴𝑠 [𝑣] for
𝑣 ∈ 𝐶 \ 𝑁 (𝑢) if 𝑢 is added into 𝑅 and removed otherwise. With the
array 𝐴𝑠, we can get the non-neighbors of each vertex efficiently.

Note that an efficient implementation of checking whether 𝑅 ∪
{𝑢} ∪ {𝑣} is a 𝑠-plex (line 11 of Algorithm 1) is nontrivial. A
straightforward implementation is that for each 𝑣 ∈ 𝐶 and for each
𝑤 ∈ 𝑅 ∪ {𝑢} \ 𝑁 (𝑣), we verify whether 𝑚(𝑤, 𝑅 ∪ {𝑢} ∪ {𝑣}) ≤ 𝑠.
The drawback of this implementation is that it needs to check the
non-neighbors of each vertex in 𝐶. To improve this, we observe that
for each𝑤 ∈ 𝑅∪{𝑢} \𝑁 (𝑣), only the vertices that𝑚(𝑤, 𝑅∪{𝑢}) = 𝑠

do not meet the condition because 𝑤 and 𝑣 are non-adjacent. We
can claim that 𝑤 is also a non-neighbor of 𝑢. To see this, we as-
sume to the contrary that 𝑤 ∈ 𝑁 (𝑢), then we have 𝑚(𝑤, 𝑅) = 𝑠.
This is impossible because 𝑤 is the non-neighbor of 𝑣 ∈ 𝐶 and
𝑚(𝑤, 𝑅 ∪ {𝑣}) = 𝑠 + 1 which is contradictory to the fact that 𝑅 ∪ {𝑣}
is a 𝑠-plex. Therefore, our improved implementation is that for each
𝑤 ∈ 𝑅 \ 𝑁 (𝑢), if𝑚(𝑤, 𝑅 ∪ {𝑢}) = 𝑠, we remove the non-neighbors
of 𝑤 in 𝐶. Note that in this improved implementation, it is no need
to check the non-neighbors of the vertices in 𝐶.

Time complexity. For the 𝑠-plex counting algorithm, the number
of the recursion-tree nodes is also consistent with Theorem 3.1.
However, in each tree node, the time consumed for 𝑠-plex counting

Algorithm 2: The new listing strategy
1 Procedure Listing(𝐶,𝑅)
2 if |𝑅 | = 𝑞 − 1 then
3 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑎𝑛𝑠𝑤𝑒𝑟 + |𝐶 |;
4 return;

5 Split𝐶 into𝐶1 and𝐶2;
6 Listing(𝐶1, 𝑅) ;
7 for𝑢 ∈ 𝐶2 do
8 𝐶 ← 𝐶 \ {𝑢};
9 𝐶′ ← {𝑣 ∈ 𝐶 |𝑅 ∪ {𝑢} ∪ {𝑣}𝑖𝑠 𝑎𝑛 HCS};

10 Listing(𝐶′, 𝑅 ∪ {𝑢}) ;

is higher than that for 𝑠-dclique counting. Theorem 3.7 shows the
time complexity taken in each tree node for 𝑠-plex counting.

THEOREM 3.7. The time complexity in each recursion-tree node
of the listing-based 𝑠-plex counting algorithm is 𝑂 (𝑠 |𝐶 |2).

By Theorem 3.5 and 3.7, the listing-based 𝑠-plex counting algo-
rithm is more sensitive to the parameter 𝑠, compared to the listing-
based 𝑠-dclique counting algorithm. As confirmed in our experiments
(see Table 2), with the increase of 𝑠, the running time of the 𝑠-plex
counting algorithm increases more significantly compared to the
𝑠-dclique counting algorithm.

4 THE PIVOT-BASED SOLUTIONS
Although we develop many pruning techniques, the HCSList frame-
work is still not very efficient for a relatively large 𝑞 due to the expo-
nential explosion of the number of HCS in real-world graphs. For
example, the DBLP network has 2.8 × 108 (5, 1)-dcliques, but it has
9.0× 1013 (10, 1)-dcliques. The sheer quantity of HCS makes listing-
based algorithms infeasible. Another disadvantage of the HCSList
framework is that it has redundant calculations. For example, two
branches of the Listing procedure may have large overlapping sets
of vertices, resulting in unnecessary duplicated calculations. A nat-
ural question that arises is whether it is possible to merge different
branches of the Listing procedure to reduce redundant calculations.
Additionally, is it possible to obtain the counts of HCS in a combi-
natorial way, rather than listing each individual one? We propose a
novel pivot-based framework that addresses these questions.

To aid understanding, we will first introduce a new listing strategy
for the pivot-based framework. Then, we explain the key pivoting
technique for implementing combinatorial counting. Finally, based
on the pivoting technique, we devise specific algorithms for counting
𝑠-dcliques and 𝑠-plexes with various optimization techniques.

4.1 Warm up: a new listing strategy
The new listing strategy utilize the idea of divide-and-conquer. Un-
like the Listing procedure in Algorithm 1, it divides the candidate
set into two parts: one part is used directly as the candidate set for
the next level of recursion, while the other part is used for listing,
similar to the approach used in HCSList. Algorithm 2 describes such
a new listing strategy.

In Algorithm 2, the candidate set is split into two sets, 𝐶1 and
𝐶2 (line 5). 𝐶1 is the candidate set of the next recursive call directly
(line 6) and 𝐶2 is to list each vertex (lines 7-10). The following
theorem shows that such a new listing strategy can also correctly
count all HCSs.

THEOREM 4.1. Algorithm 2 does not miss any HCS.

Note that the new listing strategy does not combine similar branches
or eliminate redundant computation compared to the Listing pro-
cedure in HCSList. It still requires listing each HCS. Indeed, the

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

following theorem shows that the worst-case time and space com-
plexity of Algorithm 2 is equal to those of the Listing procedure in
Algorithm 1.

THEOREM 4.2. The worst-case time and space complexity of
Algorithm 2 is the same as those of the Listing procedure in Algo-
rithm 1.

Compared to the Listing procedure in Algorithm 1, a useful fea-
ture of Algorithm 2 is that it classifies all HCSs into three distinct
categories (except the vertices contained in 𝑅):

(I) the HCS only containing vertices in 𝐶1;
(II) the HCS only containing vertices in 𝐶2;

(III) the HCS containing vertices both in 𝐶1 and 𝐶2.
With this classification, we are able to develop a pivot-based tech-
nique that can significantly reduce redundant calculations by com-
puting the count of the class-III HCSs in a combinatorial manner.

Remark. It is worth remarking that the listing procedure of Algo-
rithm 1 can be considered as a special case of Algorithm 2. When
𝐶1 in Algorithm 2 is always empty during the recursion procedure,
Algorithm 2 degenerates to the listing procedure of Algorithm 1.

4.2 A general pivot-based counting framework
As described previously, the HCS of class-III contains a sub-part
in 𝐶1. By virtue of being hereditary, this sub-part is also an HCS.
The sub-HCS must be of class-I because it only contains vertices in
𝐶1. Note that the recursive call in line 6 of Algorithm 2 has already
searched all class-I HCSs, thus it is no need to repeatedly list such
sub-HCSs when counting the class-III HCSs. Inspired by this, we
propose a novel pivoting technique to improve the efficiency of
counting the HCSs of class-III.

Definition 4.3 (pivot vertex). Let H be the set of HCSs in 𝐶1 that
∀𝐻 ∈ H, 𝑅 ∪ 𝐻 𝑖𝑠 𝑎𝑛 HCS. A vertex 𝑢 ∈ 𝐶2 is called a pivot vertex
if ∀𝐻 ∈ H, 𝑅 ∪ 𝐻 ∪ {𝑢} is an HCS.

Let 𝑢𝑝 denote a pivot vertex. By utilizing H, we can obtain the
set of HCSs of class-III {𝐻 ∪ {𝑢𝑝 }|𝐻 ∈ H} without actually listing
them. It is straightforward to deduce that the number of HCS of size
𝑞 + 1 in {𝐻 ∪ {𝑢𝑝 }|𝐻 ∈ H} is equivalent to the number of HCS of
size 𝑞 in H. Thus, by combining these calculations, we can improve
the computational efficiency.

Based on this idea, we propose a new counting framework, which
is detailed in Algorithm 3. In addition to the candidate set 𝐶 and the
sub-HCS 𝑅, the Listing procedure in Algorithm 3 also maintains a
vertex set 𝐷. The set 𝐷 contains all the pivot vertices selected so
far. Initially, 𝐷 = ∅ and the candidate set 𝐶 is divided into two sets
𝐶1 and 𝐶2 (line 8). If there exists a vertex 𝑢𝑝 that can serve as a
pivot vertex, it is removed from 𝐶2 and added to 𝐷 (lines 9-11). If
there is no pivot vertex, the process proceeds in the same manner as
Algorithm 2 (line 13). Once the size of 𝑅 reaches 𝑞 − 1, each vertex
in 𝐷 and 𝐶 can be added to 𝑅 to generate a new HCS (lines 2-3).
When 𝐶 is empty, every 𝑞 − |𝑅 | vertices in 𝐷 combined with 𝑅 form
a new HCS (lines 5-6).

By replacing the Listing procedure in HCSList with the Listing
procedure outlined in Algorithm 3, we obtain a new general frame-
work, called HCSPivot. Note that the pruning techniques proposed
in Section 3 can be directly applied to HCSPivot. Below, we analyze
the correctness of HCSPivot.

Correctness of the HCSPivot framework. Clearly, the backtracking
process of Algorithm 3 can be represented as a recursion tree, where
the root node has 𝐷 = ∅ and the leaves have either |𝑅 | = 𝑞 − 1 or
𝐶 | = 0. It is important to note that each HCS lies on exactly one

Algorithm 3: The pivot-based counting framework
1 Procedure Listing(𝐶,𝑅, 𝐷)
2 if |𝑅 | = 𝑞 − 1 then
3 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑎𝑛𝑠𝑤𝑒𝑟 + |𝐷 | + |𝐶 |;
4 return;

5 if |𝐶 | = 0 then
6 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑎𝑛𝑠𝑤𝑒𝑟 +

(|𝐷 |
𝑞−|𝑅 |

)
;

7 return;

8 Split𝐶 into𝐶1 and𝐶2;
9 if there exists a pivot vertex𝑢𝑝 then

10 𝐶2 ← 𝐶2 \ {𝑢𝑝 };
11 Listing(𝐶1, 𝑅, 𝐷 ∪ {𝑢𝑝 }) ;
12 else
13 Listing(𝐶1, 𝑅, 𝐷) ;
14 for𝑢 ∈ 𝐶2 do
15 𝐶 ← 𝐶 \ {𝑢};
16 𝐶′ ← {𝑣 ∈ 𝐶 |𝑅 ∪ {𝑢} ∪ {𝑣}𝑖𝑠 𝑎𝑛 HCS};
17 Listing(𝐶′, 𝑅 ∪ {𝑢}, 𝐷) ;

path of the recursion tree. Let us label the recursive calls of Listing
in line 11, line 13, and line 17 as 𝐿1, 𝐿2, and 𝐿3, respectively. Each
node in the recursion tree either has a child node from 𝐿1 or 𝐿2, and
multiple child nodes from 𝐿3. If an HCS consists only of vertices in
𝐶1, it will be in the path down to either 𝐿1 or 𝐿2. If an HCS contains
a pivot vertex 𝑢𝑝 and all other vertices are in𝐶1, it will be in the path
down to 𝐿1. Finally, if an HCS contains vertices in 𝐶2 (excluding 𝑢𝑝
if it exists), it will be in the path down to 𝐿3. These include all cases,
and it is clear that each HCS can occur in only one of them. Thus,
we can claim that HCSPivot is capable of accurately computing
the count of HCSs. Theorem 4.4 formally proves that HCSPivot is
correct.

THEOREM 4.4. HCSPivot correctly counts the HCSs.

Note that if no pivot vertex is selected in each recursion of Al-
gorithm 3, Algorithm 3 degenerates to Algorithm 2. Thus, the time
complexity of HCSPivot is the same as that of HCSList in the worst
case. However, for the two specific HCSs considered in this paper,
i.e., 𝑠-dclique and 𝑠-plex, we can always select valid pivot vertices
in most recursions (for 𝑠-dclique counting, we can also guarantee
that the pivot vertex always exists in each recursion), which can
substantivally boost the performance of HCSPivot. Indeed, as shown
in our experiments, HCSPivot can be up to 7 orders of magnitude
faster than HCSList based on such a powerful pivoting technique.

4.3 Pivot-based 𝑠-dclique counting
Note that HCSPivot is a general framework for counting HCSs.
When using it to count 𝑠-dcliques, it is need to solve two issues: (1)
how to split 𝐶 into 𝐶1 and 𝐶2, and (2) how to choose a pivot vertex.

Lemma 4.5, derived from Definition 4.3, provides the criteria for
a vertex 𝑢 to be a pivot vertex for 𝑠-dclique counting.

LEMMA 4.5. Let H be the set of 𝑠-dcliques in𝐶1 such that𝑚(𝑅∪
𝐻) ≤ 𝑠 for each𝐻 ∈ H, and𝑢 be a vertex in𝐶2. If𝑚(𝑅∪𝐻∪{𝑢}) ≤ 𝑠

for each 𝐻 ⊆ H, then 𝑢 is a pivot vertex.

A basic pivoting technique. By Lemma 4.5, it is easy to see that if
𝑚(𝑢, 𝑅 ∪ 𝐻) = 0 for all 𝐻 ∈ H, the vertex 𝑢 must be a pivot vertex
because 𝑚(𝑅 ∪ 𝐻 ∪ {𝑢}) =𝑚(𝑅 ∪ 𝐻) +𝑚(𝑢, 𝑅 ∪ 𝐻) ≤ 𝑠. Based on
this observation, a basic pivoting method is to select a vertex 𝑢 that
𝑚(𝑢, 𝑅) = 0 and 𝑚(𝑢, 𝐻) = 0. The pivot vertex 𝑢 can be selected
from the common neighbors of 𝑅 and𝐶1 is set as 𝑁 (𝑢) ∩𝐶. Here we
take the maximum |𝑁 (𝑢) ∩𝐶 | over all 𝑢 to ensure that the set 𝐶1 is
as large as possible. This is because a large 𝐶1 will result in a small
𝐶2 which can reduce the number recursive branches in the recursion

Counting Cohesive Subgraphs with Hereditary Properties

𝐶𝐶: {𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {} 𝐶𝐶: {𝑢𝑢1,𝑢𝑢2,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢3}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢4,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3}

𝐶𝐶: {𝑢𝑢4},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢5}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢2,𝑢𝑢4,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {𝑢𝑢3}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢4,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3}

𝐶𝐶: {𝑢𝑢4},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢5 } 𝐶𝐶: {𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3}

𝐿𝐿1

𝐿𝐿1 𝐿𝐿3

𝐿𝐿1

𝐿𝐿3

𝐿𝐿1

𝐿𝐿1

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5}
𝐿𝐿1

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢5}

𝐿𝐿3

𝐿𝐿1

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5}
𝐿𝐿1

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢5}
𝐿𝐿1

(a) (4, 1)-dcliques containing 𝑢0

𝐶𝐶: {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {}

𝐶𝐶: 𝑢𝑢1,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5 ,𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2}

𝐶𝐶: {𝑢𝑢3,𝑢𝑢4},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢5}

𝐶𝐶: {𝑢𝑢3,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1},𝐷𝐷: {𝑢𝑢2}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {}
𝐿𝐿1

𝐿𝐿3

𝐿𝐿1

𝐿𝐿3 𝐿𝐿1

𝐿𝐿3

𝐶𝐶: {𝑢𝑢1,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: {𝑢𝑢2}

𝐶𝐶: {𝑢𝑢3},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: 𝑢𝑢2,𝑢𝑢1

𝐿𝐿3

𝐿𝐿3

𝐶𝐶: {𝑢𝑢4},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢5}

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢3},𝐷𝐷: {𝑢𝑢2,𝑢𝑢5}

𝐿𝐿2

𝐿𝐿1

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6,𝑢𝑢4},𝐷𝐷: {𝑢𝑢2}

𝐶𝐶: {𝑢𝑢1,𝑢𝑢3,𝑢𝑢4},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6,𝑢𝑢5},𝐷𝐷: {𝑢𝑢2}

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢1},𝐷𝐷: {𝑢𝑢2,𝑢𝑢3,𝑢𝑢5}

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0},𝐷𝐷: {𝑢𝑢2,𝑢𝑢5,𝑢𝑢4}

𝐶𝐶: {},𝑅𝑅: {𝑢𝑢0,𝑢𝑢6},𝐷𝐷: 𝑢𝑢2,𝑢𝑢1,𝑢𝑢3

𝐿𝐿1

𝐿𝐿1

𝐿𝐿1

(b) (4, 1)-plex containing 𝑢0

Figure 3: Illustration of the recursion tree of Algorithm 3 on the graph in Fig. 1(a).

tree of Algorithm 3, thus improving the efficiency of the algorithm.
However, such a straightforward method has two limitations. First,
it requires the pivot must be a common neighbor of 𝑅 which is very
restrictive and such a pivot may not exist (the common neighbor
of 𝑅 may be empty). Second, even though the pivot vertex has the
maximum degree among the common neighbors of 𝑅, |𝐶2 | may
still be large, meaning that there will be many recursive branches
generated by the vertices in 𝐶2, which may also slow down the
algorithm.

An improved pivoting technique. To overcome the limitations
of the basic pivoting method, we propose an improved pivoting
technique which can ensure that the pivot vertex always exists in
each recursion. Specifically, we relax the restriction ∀𝐻 ⊆ H,𝑚(𝑅 ∪
𝐻 ∪ {𝑢}) ≤ 𝑠 in Lemma 4.5 to ∀𝐻 ⊆ H,𝑚(𝐻 ∪ {𝑢}) ≤ 𝑠. This
change means that we do not consider the non-neighbors of 𝑢 in
𝑅. Instead of choosing vertices in the common neighbors of 𝑅, we
directly select the vertex with maximum degree in 𝐶 as the pivot
vertex and let 𝐶1 = 𝑁 (𝑢) ∩ 𝐶. This may result in the problem
of ∃𝑢 ∈ 𝐷,𝑚(𝑢, 𝑅) > 0 at the leaf of the recursion tree (lines 5-
7 of Algorithm 3). Recall that for the basic pivoting technique,
it has ∀𝑢 ∈ 𝐷,𝑚(𝑢, 𝑅) = 0 since 𝑢 is chosen from the common
neighbors of 𝑅. Thus, we can choose arbitrary 𝑞 − |𝑅 | vertices from
𝐷. However, now it may occurs the case that 𝑚(𝑅 ∪ 𝐻) > 𝑠 where
|𝐻 | = 𝑞 − |𝑅 |, 𝐻 ⊆ 𝐷. We need to compute how many subsets
with size 𝑞 − |𝑅 | in 𝐷 are valid answers. Fortunately, this is not a
complicated issue, since 𝐺 (𝐷) is always a clique as described in the
following Theorem 4.6.

THEOREM 4.6. If the vertex 𝑢 is selected as the pivot vertex and
let 𝐶1 = 𝑁 (𝑢) ∩𝐶, 𝐺 (𝐷) must be a clique for the parameter 𝐷 in
each recursion node of Algorithm 3.

Note that with our improved pivoting technique, the task of choos-
ing arbitrary 𝑞 − |𝑅 | vertices from 𝐷 when |𝐶 | = ∅ (as stated in line 6
of Algorithm3) transforms into computing the number of subsets 𝐻
with 𝐻 ⊆ 𝐷 and |𝐻 | = 𝑞− |𝑅 | such that 𝐻 ∪𝑅 is a valid (𝑞, 𝑠)-dclique.

THEOREM 4.7. If
∑
𝑢∈𝐻 𝑚(𝑢, 𝑅) ≤ 𝑠 −𝑚(𝑅) holds, 𝐻 ∪ 𝑅 is a

valid (𝑞, 𝑠)-dclique for 𝐻 ⊆ 𝐷, |𝐻 | = 𝑞 − |𝑅 |.
As a consequence, the problem of counting all valid (𝑞, 𝑠)-dcliques

is equivalent to a classic variant of 0-1 Knapsack Problem, where
the knapsack size is 𝑠 −𝑚(𝑅) and the item weight is𝑚(𝑢, 𝑅) for each
𝑢 ∈ 𝐷 . This can be solved in 𝑂 (𝑠 |𝐷 |2) time and 𝑂 (𝑠 |𝐷 |) space using
Dynamic Programming [42].

The correctness of the pivot-based 𝑠-dclique counting algorithm
can be guaranteed by Theorem 4.4 and Theorem 4.6. In each recur-
sion, the time taken for selecting a pivot vertex is at most 𝑂 (|𝐶 |2),
the time consumed for computing the (𝑞, 𝑠)-dclique counts when

|𝐶 = ∅| is𝑂 (𝑠 |𝐷 |2), and the time spent on lines 14-17 of Algorithm 3
is 𝑂 (|𝐶2 |) (Theorem 3.5). Thus, the worst-case time complexity in
each recursion is 𝑂 (max(|𝐶 |2, 𝑠 |𝐷 |2)). Note that the practical per-
formance of our pivot-based algorithm is extremely faster than the
worst-case bound thanks to the benefits of the new pivot vertex selec-
tion strategy: (1) By selecting the vertex with the maximum degree
in 𝐶 as the pivot vertex, the size of 𝐶1 = 𝑁 (𝑢𝑝) ∩𝐶 is maximized
and the number of vertices to list is minimized; (2) Pivot-vertices
always exist at each node of the full recursion tree, and thus more 𝑠-
dcliques are counted in a combinational way. The following example
illustrates how our algorithm works.

Example 4.8. Fig. 3(a) depicts a sub-tree of the total recursion
tree generated by Algorithm 3 on counting the (4, 1)-dcliques that
include vertex 𝑢0. The calls to Listing in line 11, line 13, and line 17
of Algorithm 3 are labeled as 𝐿1, 𝐿2, and 𝐿3, respectively. The root
node has a candidate set of 𝐶 = {𝑢1, 𝑢2, . . . , 𝑢6}, a sub-dclique of
𝑅 = {𝑢0}, and an empty set 𝐷 = {}. The vertex 𝑢3 is selected
as the pivot vertex because it has the maximum degree. The pivot
vertex is then added to the set 𝐷 and the candidate set 𝐶 becomes
{𝑢1, 𝑢2, 𝑢4, 𝑢5, 𝑢6}. The vertex 𝑢2 has the maximum degree in the
updated candidate set, so it is processed through 𝐿1 and the vertex
𝑢6 is processed through 𝐿3. The last step is to solve a 0-1 Knapsack
Problem at the leaf node. Let us consider the example of the leaf node
𝑅 = {𝑢0}, 𝐷 = {𝑢2, 𝑢3, 𝑢4, 𝑢5}. The problem is to choose 𝑞 − |𝑅 | = 3
vertices from 𝐷 . Since𝐺 (𝐷) must be a clique, we need to ensure that
the three chosen vertices have at most 𝑠 −𝑚(𝑅) = 1 non-neighbors in
𝑅. Clearly, the two correct answers are {𝑢2, 𝑢3, 𝑢5} and {𝑢2, 𝑢4, 𝑢5}.

4.4 Pivot-based 𝑠-plex counting
Compared to counting 𝑠-dcliques, counting 𝑠-plexes is a more com-
plicated task as each vertex is allowed to miss at most 𝑠 edges.
Lemma 4.9, which derives from Definition 4.3, provides the criteria
for a vertex 𝑢 to be considered as a pivot vertex.

LEMMA 4.9. Let H be the set of 𝑠-plex in 𝐶1 that ∀𝐻 ∈ H,∀𝑣 ∈
𝑅 ∪ 𝐻,𝑚(𝑣, 𝑅 ∪ 𝐻) ≤ 𝑠. Let 𝑢 be a vertex that 𝑢 ∈ 𝐶2 and 𝐻 ′

represents 𝑅 ∪ 𝐻 ∪ {𝑢} in short. If ∀𝐻 ⊆ H,∀𝑣 ∈ 𝐻 ′,𝑚(𝑣, 𝐻 ′) ≤ 𝑠,
𝑢 is a pivot vertex.

The condition ∀𝐻 ⊆ H,∀𝑣 ∈ 𝐻 ′,𝑚(𝑣, 𝐻 ′) ≤ 𝑠 means that for
any 𝐻 ∈ H, adding the vertex 𝑢 into the set 𝑅 ∪𝐻 always results in
an 𝑠-plex. It encompasses both (1) the requirement that 𝑚(𝑢,𝐻 ′) ≤
𝑠, meaning that 𝑢 itself has at most 𝑠 non-neighbors, and (2) the
requirement that ∀𝑣 ∈ (𝑅 ∪ 𝐻) \ 𝑁 (𝑢),𝑚(𝑣, 𝐻 ′) ≤ 𝑠, meaning that
the non-neighbors of 𝑢 still have at most 𝑠 non-neighbors after the
addition of 𝑢. Based on these observations, we propose a pivot-
selection technique for counting 𝑠-plexes based on Theorem 4.10.

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

THEOREM 4.10. Let 𝑢 ∈ 𝐶, and let𝐶1 = 𝑁 (𝑢) ∩𝐶. The vertex 𝑢
can serve as a pivot vertex if ∀𝑣 ∈ 𝑅 \ 𝑁 (𝑢),𝑚(𝑣, 𝑅 ∪𝐶1) ≤ 𝑠 − 1.

According to Theorem 4.10, the steps of choosing the pivot vertex
is as follows. First, for each 𝑣 ∈ 𝐶, we evaluate whether all vertices
in 𝑅 \ 𝑁 (𝑢) have at most 𝑠 − 1 non-neighbors in 𝑅 ∪ (𝐶 ∩ 𝑁 (𝑣)).
Then, we obtain a set of vertices that can serve as the pivot vertex.
Among them, we choose the one that has maximum degree in 𝐶 as
the pivot vertex. If no vertex in 𝐶 can serve as the pivot vertex, we
set 𝐶1 = 𝐶 ∩ 𝑁 (𝑣) that 𝑣 has maximum degree in 𝐶.

However, for each 𝑣 ∈ 𝐶 and for each 𝑤 ∈ 𝑅 \ 𝑁 (𝑣), computing
the count of non-neighbors of 𝑤 in 𝑅 ∪ (𝐶 ∩ 𝑁 (𝑣)) is quite a heavy
work. To enhance the efficiency, we improve the strategy of choosing
the pivot vertex according to Corollary 4.11, which comes from
Theorem 4.10.

COROLLARY 4.11. Let 𝑢 be a vertex in𝐶 and let𝐶1 = 𝑁 (𝑢) ∩𝐶.
𝑢 can serve as a pivot vertex if ∀𝑣 ∈ 𝑅 \ 𝑁 (𝑢),𝑚(𝑣, 𝑅 ∪𝐶) ≤ 𝑠 − 1.

The correctness of Corollary 4.11 can be ensured by Theorem 4.10
because 𝐶1 is a subset of 𝐶. According to Corollary 4.11, we just
need to compute the count of non-neighbors in 𝑅 ∪𝐶 for each vertex
in 𝑅, which can be done in linear time. Similarly, among the set
of vertices that can serve as the pivot vertex, we choose the one
that has maximum degree in 𝐶 as the pivot vertex, and let 𝐶1 be the
set of neighbors of the pivot vertex. It is important to note that if
the condition “∀𝑣 ∈ 𝑅 \ 𝑁 (𝑢),𝑚(𝑣, 𝑅 ∪𝐶) ≤ 𝑠 − 1" does not hold,
there is no pivot vertex can be selected. In this case, we just pick the
maximum-degree vertex 𝑢 in 𝐶 and set 𝐶1 = 𝑁 (𝑢) ∩𝐶.

Based on this improved pivoting technique, the time taken for
selecting a pivot vertex is 𝑂 (|𝐶 |2) in each recursion. Clearly, com-
puting the set 𝐶1 consumes at most 𝑂 (|𝐶 |2) time, and the time spent
on lines 14-17 of Algorithm 3 is 𝑂 (𝑠 |𝐶 |2) (Theorem 3.7). Thus, the
total time cost in each recursion is 𝑂 (𝑠 |𝐶 |2). Similar to the pivot-
based 𝑠-dclique counting algorithm, the practical performance of the
pivot-based 𝑠-plex counting algorithm is also much better than the
worst-case time bound, as confirmed in our experiments.

Example 4.12. Fig. 3(b) is the recursion tree of Algorithm 3 on
counting (4, 1)-plex. We label the calls of Listing in line 11, line 13,
line 17 of Algorithm 3 as 𝐿1, 𝐿2, 𝐿3, respectively. The root node
has 𝐶 = {𝑢1, 𝑢2, ..., 𝑢6} and 𝑅 = {𝑢0}. Among the root node, 𝑢2, 𝑢5
and 𝑢6 can serve as the pivot vertex and they all have 4 neighbors
in 𝐶. The vertices 𝑢1, 𝑢3 and 𝑢4 cannot serve as the pivot vertex.
This is because they have non-neighbors in 𝐶 ∪ 𝑅 and the count
of the non-neighbor in 𝐶 ∪ 𝑅 is at most 𝑠 − 1 = 0 according to
Corollary 4.11. Suppose that choose 𝑢2 as the pivot vertex, and then
𝐶1 = 𝑁 (𝑢2) = {𝑢1, 𝑢3, 𝑢4, 𝑢5},𝐶2 = {𝑢6}. 𝐶1 is the candidate set
of the child node through 𝐿1. The vertex 𝑢6 is inserted into 𝑅 in
the child node through 𝐿3. Note that on the recursion node with
𝐶 = {𝑢3, 𝑢4}, 𝑅 = {𝑢0}, and 𝐷 = {𝑢2, 𝑢5}, no vertex can serve as
the pivot vertex. In this case, we set 𝐶1 = 𝐶 ∩ 𝑁 (𝑢3) = {𝑢4} and
𝐶2 = {𝑢3}. Here a child node through 𝐿2 with candidate set 𝐶1
occurs, and 𝑢3 is inserted into 𝑅 in the child node through 𝐿3.

In Fig. 3(b), the red dotted leaves are the answers. The recursion
node with 𝐶 = {𝑢1, 𝑢3, 𝑢4}, 𝑅 = {𝑢0, 𝑢6, 𝑢5}, and 𝐷 = {𝑢2} is the
leaf node because |𝑅 | = 𝑞 − 1 (line 2 of Algorithm 3). In the red
dotted leaves, the combination of any 𝑞 − |𝑅 | vertices in 𝐷 with 𝑅

forms a (4, 1)-plex. For instance, in the leaf node with 𝑅 = {𝑢0, 𝑢6}
and 𝐷 = {𝑢2, 𝑢1, 𝑢3}, every two vertices of 𝐷 combined with 𝑅 will
result in a (4, 1)-plex.

4.5 Discussions
Counting HCS with size in a range [𝑞𝑙 , 𝑞𝑟] simultaneously. A
striking feature of Algorithm 3 is that it is highly adaptable and
capable of simultaneously computing the counts of HCSs of different
sizes in a range of [𝑞𝑙 , 𝑞𝑟]. This is achievable due to the fact that
the recursion tree of Algorithm 3 is only slightly impacted by the
parameter 𝑞. By making a few modifications to the algorithm, we can
count HCSs with sizes in the range [𝑞𝑙 , 𝑞𝑟] simultaneously. These
modifications include: (1) modifying |𝑅 | = 𝑞 − 1 in line 2 to |𝑅 | =
𝑞𝑟 − 1, and (2) modifying 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑎𝑛𝑠𝑤𝑒𝑟 +

(|𝐷 |
𝑞−|𝑅 |

)
in line 6 to

𝑎𝑛𝑠𝑤𝑒𝑟𝑞 ← 𝑎𝑛𝑠𝑤𝑒𝑟𝑞 +
(|𝐷 |
𝑞−|𝑅 |

)
for every 𝑞 ∈ [𝑞𝑙 , 𝑞𝑟]. Note that the

listing-based framework, i.e., Algorithm 1, cannot simultaneously
compute the counts of HCSs of different sizes in a range. In the
experiments, we will use the counts of HCSs with various size to
build a graph profile [29, 68] for a given network. The experimental
results show the ability of the proposed graph profile to characterize
different types of networks.

Local counting. Another important feature of Algorithm 3 is that it
can obtain the local count of HCS for each vertex or edge. Here local
count refers to the number of HCSs that contain a specific vertex or
edge. For a given vertex 𝑢 or edge (𝑢, 𝑣), we define its local count
as 𝑐𝑢 or 𝑐 (𝑢,𝑣) , respectively. To implement locally counting using
Algorithm 3, we only need to add a counter for each vertex (or each
edge) in line 6. More specifically, to compute the local counts for
vertices, we partition the vertices into two categories: 𝑢 ∈ 𝑅 and
𝑢 ∈ 𝐷. If 𝑢 ∈ 𝑅, then 𝑐𝑢 is updated as 𝑐𝑢 ← 𝑐𝑢 +

(|𝐷 |
𝑞−|𝑅 |

)
. On the

other hand, if 𝑢 ∈ 𝐷, then 𝑐𝑢 is updated as 𝑐𝑢 ← 𝑐𝑢 +
(|𝐷 |−1
𝑞−|𝑅 |−1

)
.

To calculate the local counts for edges, we divide the edges into
three categories: (1) (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑅), (2) (𝑢 ∈ 𝑅, 𝑣 ∈ 𝐷), and (3)
(𝑢 ∈ 𝐷, 𝑣 ∈ 𝐷). For category (1), 𝑐 (𝑢,𝑣) is updated as 𝑐 (𝑢,𝑣) ←
𝑐 (𝑢,𝑣) +

(|𝐷 |
𝑞−|𝑅 |

)
. For category (2), 𝑐 (𝑢,𝑣) is updated as 𝑐 (𝑢,𝑣) ←

𝑐 (𝑢,𝑣) +
(|𝐷 |−1
𝑞−|𝑅 |−1

)
. Finally, for category (3), 𝑐 (𝑢,𝑣) is updated as

𝑐 (𝑢,𝑣) ← 𝑐 (𝑢,𝑣) +
(|𝐷 |−2
𝑞−|𝑅 |−2

)
. Note that the listing-based framework,

i.e., Algorithm 1, cannot compute the local counts for all vertices
(or edges) in such a combinatorial manner. In the experiments, we
will apply the local counts to construct a matrix 𝑀 , where 𝑀𝑖 𝑗 is
the count of HCS containing the edge (𝑖, 𝑗). Such a matrix 𝑀 is
then used for graph clustering applications which achieves much
better performance compared to the state-of-the-art graph clustering
methods, as shown in our experiments.

Difference with the maximal 𝑠-dclique or 𝑠-plex enumeration.
Note that existing maximal 𝑠-dclique or 𝑠-plex enumeration algo-
rithms [20, 21, 28, 66, 75] also use a pivoting technique to reduce the
enumeration branches. Our pivot-based algorithm (i.e., Algorithm 3),
however, is significantly different from those existing algorithms.
First, the recursion tree of Algorithm 3 is completely different from
those of the maximal 𝑠-dclique or 𝑠-plex enumeration algorithms.
Specifically, the leaf nodes of our recursion tree may not be maximal
results. However, for the maximal 𝑠-plex or 𝑠-dclique enumeration
algorithms [20, 21, 28, 66, 75], the leaf nodes of the recursion tree
are maximal 𝑠-plexes or 𝑠-dcliques. Second, to ensure that each HCS
is counted exactly once, our algorithm guarantees that there are no
overlapping sub-HCS among the HCSs at the leaf nodes. This differs
from the maximal 𝑠-dcliques or 𝑠-plexes enumeration algorithms,
which may contain overlapping sub-structures at the leaf nodes.
Third, our definition of pivot vertex (Definition 4.3) is specifically
designed for the HCS counting problem, which distinguishes it from

Counting Cohesive Subgraphs with Hereditary Properties

Table 1: Datasets

Networks |𝑽 | |𝑬 | 𝜹 Type

WikiV 7115 201524 53 Social network
Caida 26475 106762 22 Autonomous system network
Epinion 75879 811480 67 Social network
EmailEu 265009 728960 37 Communication network
Amazon 403394 4886816 10 Communication network
DBLP 425957 2099732 113 Co-authorship network
Pokec 1632803 44603928 47 Social network
Skitter 1696415 22190596 111 Autonomous system network

the maximal 𝑠-dcliques or 𝑠-plexes enumeration problems. Moreover,
to improve the efficiency, we have devised unique and novel pivot-
ing techniques to prune unnecessary candidate sets and branches
(Theorem 4.6 and 4.10), which significantly differ from the pivoting
techniques utilized in the enumeration of maximal 𝑠-dcliques or
𝑠-plexes.

Relation to the pivot-based𝑞-clique counting algorithm. PIVOTER
is the state-of-the-art pivot-based 𝑞-clique counting algorithm [33]
which builds upon the classic Bron-Kerbosch algorithm for maximal
clique enumeration [9]. Since 𝑞-clique is a type of HCS, our pivot-
based algorithm (i.e., Algorithm 3) can also be applied to count
𝑞-cliques. We note that PIVOTER is a special case of Algorithm 3.
Specifically, we remove lines 12-13, select the maximum-degree
vertex in 𝐶 as the pivot vertex 𝑣𝑝 , and set 𝐶1 = 𝑁 (𝑣𝑝) ∩ 𝐶, then
Algorithm 3 is exactly equivalent to the PIVOTER algorithm. Com-
pared to PIVOTER, which can only be applied to count 𝑞-cliques,
Algorithm 3 is a general framework which is capable of processing
all HCS counting problems. Moreover, the idea of splitting the candi-
date set into 𝐶1 and 𝐶2 in Algorithm 3 is not used in PIVOTER [33],
which is critical to develop a general approach to all HCS count-
ing problems. Based on Algorithm 3, we need to design different
candidate set partition and pivot vertex selection strategies when han-
dling various HCS counting problems. Additionally, our algorithm
incorporates several carefully-designed pruning techniques that are
tailored to the specific restrictions defined in Definitions 2.2 and 2.3,
which are also not shown in PIVOTER [33].

Relation between listing and pivot based solutions. Note that our
listing-based solutions are both essential and nontrivial, and they
are not always inferior to pivot-based solutions. In cases where 𝑞 is
a small constant, the time complexity of listing-based solutions is
polynomial, while pivot-based solutions always have exponential
time complexity for any value of 𝑞. Our experiments have also
shown that listing-based solutions outperform pivot-based solutions
in certain scenarios (refer to Table 2). In Section 4.1, the new listing
strategy serves as a precursor to the subsequent pivot-based solutions.
Its main purpose is to improve the understandability of the pivot-
based solutions.

Extension to counting HCSs with a larger diameter. To apply
Algorithm 1 and Algorithm 3 to count HCSs with diameter larger
than 2, we need to modify line 3 of Algorithm 1 to include vertices
in longer hops. As for Algorithm 3, we can make use of the basic
pivot technique in Definition 4.3.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of the proposed solutions. In addition, we also evaluate
the effectiveness of our algorithms by presenting case studies and
demonstrating their applications in Section 5.3 and 5.4.

5.1 Experimental setup
Algorithms. We evaluate 4 algorithms, namely Dlist, Plist, Dpivot,
and Ppivot. Dlist and Plist are listing-based approaches to count
𝑠-dclique and 𝑠-plex respectively. On the other hand, Dpivot and
Ppivot are pivot-based algorithms used to count 𝑠-dclique and 𝑠-plex
respectively. All algorithms are implemented in C++ and all of them
are integrated with the pruning techniques developed in Section 3 as
their default setting. Since this is the first work to study the problem
of HCS counting, we use the list-based algorithms Dlist and Plist as
the baselines.

Datasets. We selected 8 real-world networks to evaluate the per-
formance of different algorithms. The details of the datasets can
be found in Table 1. All the datasets used in our experiments are
obtained from the SNAP project [36].

All the experiments are conducted on a server with an AMD
3990X CPU, 256GB memory, and Linux CentOS 7 operating system.
Similar to previous studies on enumerating maximal 𝑠-dcliques [20]
and 𝑠-plexes [21, 66, 75], we mainly evaluate different HCS counting
algorithms with 𝑠 ≤ 3. This is because real-world applications often
require that the subgraph pattern is cohesive and also very similar
to clique [21, 66, 75]. When 𝑠 > 3, the HCS may become sparse,
making it more reasonable to consider small values of 𝑠, as previous
studies have commonly done [20, 21, 66, 75].

5.2 Performance studies
Comparing the listing and pivot-based algorithms. Comparing
the performance of Dlist and Dpivot in Table 2, we observe that
they exhibit similar performance when 𝑞 is small. For example, on
WikiV, Dlist takes 10.2 seconds to count (5, 1)-dclique, while Dpivot
needs 9.62 seconds. However, as 𝑞 becomes larger, Dpivot can be
several orders of magnitude faster than Dlist on many networks.
For example, on DBLP, when 𝑠 = 1 and 𝑞 = 9, Dlist consumes
162301.4 seconds, while Dpivot takes only 0.1 seconds. We also
find that on some networks, such as Caida and Amazon, both Dlist
and Dpivot perform similarly even for a large 𝑞. This is because the
count of HCS with size 𝑞 in each network differs. If the count is large,
Dlist is often much slower than Dpivot, while if the count is not very
large, Dlist performs comparably with Dpivot. For instance, Epinion
has 1.7 × 109 (15, 1)-dcliques, whereas Caida only has 3.2 × 104
(12, 1)-dcliques. Similarly, Ppivot is more efficient than Plist on
complex networks when 𝑞 is large. These results demonstrate the
high efficiency of the proposed pivot-based counting algorithms.

Difference on counting 𝑠-dclique and 𝑠-plex. From Table 2, we
observe that Plist is slower than Dlist, and Ppivot is slower than
Dpivot for a given 𝑠 and 𝑞. For instance, on Skitter when 𝑠 = 1
and 𝑞 = 30, Dpivot is an order of magnitude faster than Ppivot.
This result suggests that 𝑠-plex is a more complex structure than the
𝑠-dclique, which is often more difficult to count.

Dpivot and Ppivot with various 𝑞 and 𝑠. In Table 2, we observe
that the running time of Dpivot and Ppivot decreases as 𝑞 increases.
However, the counter-intuitive thing is that the count of HCS may
not decrease as 𝑞 becomes larger. For instance, Skitter has 9.3× 1013
(10, 1)-dcliques and 1.1×1021 (30, 1)-dcliques, but Dpivot runs faster
on counting (30, 1)-dcliques than (10, 1)-dcliques. This phenomenon
occurs because larger values of 𝑞 can prune more candidate sets,
thanks to the core-based and upper-bound based pruning techniques
developed in Section 3. Note that the size of the search tree in
Algorithm 3 is almost not affected by the parameter 𝑞. Thus, no
matter what the value of 𝑞 is, Algorithm 3 will enumerate all the

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

Table 2: Running time (sec) of different algorithms with various 𝑞 and 𝑠

Networks

Running time (sec)
𝒔 = 1 𝒔 = 2 𝒔 = 3

𝑠-dclique 𝑠-plex 𝑠-dclique 𝑠-plex 𝑠-dclique 𝑠-plex
𝒒 Dlist Dpivot 𝒒 Plist Ppivot 𝒒 Dlist Dpivot 𝒒 Plist Ppivot 𝒒 Dlist Dpivot 𝒒 Plist Ppivot

WikiV
5 10.2 9.6 5 18.3 16.7 7 126.4 134.9 7 4315.5 3139.3 10 3083.8 720.3 15 - 70049.5
10 13.1 5.7 10 80.9 14.6 12 60.1 43.5 12 5059.8 1618.3 15 95.3 115.4 20 3612.8 1548.9
15 1.4 1.8 15 8.1 2.4 17 3.7 7.8 17 - 88.9 20 3.9 9.4 25 1.9 2.1

Caida
6 0.2 0.1 6 0.3 0.2 7 0.9 0.6 7 19.3 9.8 7 22.9 6.6 7 - 14131.6
9 0.1 0.0 9 0.3 0.1 9 0.6 0.3 9 12.9 5.4 9 3.6 2.0 9 - 375.8
12 0.0 0.0 12 0.1 0.0 12 0.1 0.1 12 4.3 1.1 12 0.7 0.4 12 193.0 90.7

Epinion
5 48.2 36.0 5 62.6 66.3 7 1450.8 588.9 7 - 14507.9 10 - 3747.7 25 - 93791.8
10 320.7 25.8 10 1813.7 109.6 12 - 267.9 12 - 26011.0 15 - 1137.0 30 - 733.7
15 462.2 12.9 15 7951.5 56.9 17 6013.3 92.6 17 - 12645.6 20 1046.6 240.7 35 1.0 0.9

EmailEu
5 3.4 1.9 5 4.0 3.7 7 16.8 14.8 7 386.5 281.4 10 225.7 48.1 10 - 14966.8
10 1.9 0.7 10 11.4 1.7 9 36.7 4.4 12 508.0 113.6 15 244.7 6.6 15 - 3577.9
15 0.2 0.2 15 0.8 0.3 12 6.2 3.5 17 27.1 7.7 20 118.8 0.4 20 - 77.5

Amazon
6 2.8 1.0 6 4.2 2.7 7 6.0 1.7 7 39.5 18.3 7 53.1 10.5 7 - 23008.3
9 0.7 0.3 9 0.9 0.5 9 1.5 0.5 9 7.1 2.5 9 5.3 1.1 9 254.7 106.7
12 0.3 0.1 12 0.1 0.1 12 0.3 0.1 12 0.2 0.2 12 0.4 0.2 12 2.6 1.0

DBLP
5 4.9 0.5 5 6.1 0.9 7 1100.2 0.7 7 1518.9 11.8 7 1439.1 5.0 10 - 930.6
7 1005.5 0.2 7 1192.8 0.3 12 - 0.2 12 - 2.8 9 182028.8 1.8 15 - 550.6
9 162301.4 0.1 9 193757.0 0.2 17 - 0.2 17 - 2.3 12 - 1.3 20 - 459.3

Pokec
5 279.6 139.7 5 493.8 538.6 7 797.2 493.1 7 66895.4 8683.0 10 - 936.9 15 - 54975.3
10 125.3 22.4 10 468.2 57.1 12 1209.2 67.6 12 16931.4 1584.5 20 2603.2 14.5 20 - 4817.3
15 163.8 10.0 15 673.6 13.7 17 1075.8 14.8 17 14930.8 238.3 30 30.5 4.8 25 - 119.8

Skitter
10 - 4209.7 30 - 54752.0 30 - 25884.6 55 - 49106.6 40 - 67878.3 60 - 423542.2
30 - 1849.2 40 - 13224.9 40 - 7784.1 60 - 1069.3 50 - 7355.9 65 - 2177.8
50 - 906.7 50 - 728.8 50 - 1201.2 65 - 96.3 60 - 668.9 70 - 136.2

Table 3: The reduction rate of candidate pruning technique.

𝒒 Networks
The reduced ratio of the candidate set

𝒔 = 1 𝒔 = 2 𝒔 = 3
𝑠-dclique 𝑠-plex 𝑠-dclique 𝑠-plex 𝑠-dclique 𝑠-plex

10
WikiV 95.33% 95.39% 94.72% 94.02% 93.95% 91.52%
Epinion 95.81% 95.96% 95.30% 94.92% 94.64% 92.81%
Amazon 94.83% 93.94% 94.07% 93.41% 93.28% 92.06%
Pokec 97.66% 97.72% 97.36% 97.28% 97.01% 95.89%

20
WikiV 97.59% 97.67% 97.52% 97.44% 97.39% 97.19%
Epinion 97.62% 97.66% 97.55% 97.51% 97.45% 97.28%
Amazon 100% 100% 100% 100% 100% 100%
Pokec 99.80% 99.72% 99.71% 99.47% 99.60% 99.06%

large HCSs. Therefore, the larger the value of 𝑞, the smaller the size
of the candidate set, and the faster Dpivot and Ppivot are.

In Table 2, we can also observe that the running time of Dpivot
and Ppivot increases as the value of 𝑠 increases. For instance, on
the WikiV network, Dpivot takes 9.62 seconds for (5, 1)-dclique and
134.9 seconds for (7, 2)-dclique, which is an increase of 14×. On
the other hand, Ppivot takes 16.7 seconds for (5, 1)-plex and 3139.3
seconds for (7, 2)-plex, which is an increase of 188×. This is because
the number of HCSs in a network increases significantly when the
parameter 𝑠 increases.

Evaluating the pruning technique: candidate reduction. Table 3
reports the reduction rate of the candidate pruning technique. 𝑞 is
fixed to 10 and 20. The reduction rate is computed as

𝑐𝑝𝑟𝑒−𝑐𝑛𝑜𝑤
𝑐𝑝𝑟𝑒

,
where 𝑐𝑝𝑟𝑒 is the total size of all the candidate set before pruning,
i.e.

∑
𝑣𝑖 | ®𝑁 (𝑣𝑖) ∪ ®𝑁2 (𝑣𝑖) | in line 3 of Algorithm 1 and 𝑐𝑛𝑜𝑤 is the

total size after pruning. The table shows that the candidate reduction
technique can remove over 90% of unnecessary vertices, which is
a significant speed-up. When 𝑞 goes larger, more vertices can be
removed from the candidate set. For example, when 𝑠 = 1 and
𝑞 = 10, the total candidate set size of WikiV after pruning on 𝑠-
dclique counting is 3.5 × 105. When 𝑠 = 1 and 𝑞 = 20, the size
becomes 2.0× 104. Therefore, the candidate reduction based pruning
technique is effective.

Evaluating the prune technique: upper bound. In Fig. 4, we
compare Ppivot against Ppivot-nup, and compare Dpivot against
Dpivot-nup on WikiV, where Ppivot-nup and Dpivot-nup are Al-
gorithm 3 without the prune techniques based on the upper bounds.

6 8 10 12 14 16 18 20
q

100

101

Ti
m

e
(s

)

Ppivot-nup
Dpivot-nup

Ppivot
Dpivot

(a) 𝑠 = 1

6 8 10 12 14 16 18 20
q

101

102

103

Ti
m

e
(s

)

Ppivot-nup
Dpivot-nup

Ppivot
Dpivot

(b) 𝑠 = 2

Figure 4: Effectiveness of the upper bounds (WikiV).

Table 4: The percentage of HCSs counted in combination

q Networks 𝑠-dclique 𝑠-plex
𝑠 = 1 𝑠 = 2 𝑠 = 1 𝑠 = 2

7
WikiV 95.7% 91.8% 87.6% 57.4%
Epinion 92.8% 87.3% 84.3% 51.8%
Amazon 100.0% 100.0% 100.0% 98.4%
Pokec 98.5% 96.5% 94.8% 72.1%

14
WikiV 100.0% 100.0% 100.0% 99.8%
Epinion 100.0% 100.0% 100.0% 99.6%
Amazon 100.0% 100.0% 100.0% 100.0%
Pokec 100.0% 100.0% 100.0% 100.0%

q=4 q=7 q=100
50

100
150
200
250
300
350
400

M
em

or
y

(M
B

)

Plist
Dpivot

Plist
Ppivot

(a) Amazon

q=5 q=10 q=150
500

1000
1500
2000
2500
3000
3500
4000

M
em

or
y

(M
B

)

Plist
Dpivot

Plist
Ppivot

(b) Pokec

Figure 5: Memory overheads of different algorithms

Similar results can also be observed on the other datasets. As shown
in Fig. 4, the effectiveness of the upper bounds increases when 𝑞

becomes larger. The effect of 𝑠 on the effectiveness of the upper
bounds also increases with increasing 𝑠. For instance, by fixing
𝑞 = 20, Ppivot-nup is 4× slower than Ppivot when 𝑠 = 1 while 47×
when 𝑠 = 2.

Counting Cohesive Subgraphs with Hereditary Properties

Table 5: The running time of counting HCS with size in [ql, qr]
simultaneously (𝑞𝑙 = 5, 𝑞𝑟 = 20).

Networks
Running time (sec)

Dpivot Ppivot
𝑞𝑙 [𝑞𝑙 , 𝑞𝑟] 𝑞𝑙 [𝑞𝑙 , 𝑞𝑟]

WikiV 9.62 11.11 16.68 32.27
Epinion 35.98 47.595 66.31 184.17
Amazon 1.02 1.86 4.72 4.74
Pokec 139.73 146.88 538.55 570.89

The effectiveness of the pivoting technique. In Algorithm 3, the
HCSs are counted by listing (line 3) or counted in a combinatoric
manner (line 6). Clearly, the more HCSs are counted in a combina-
toric manner, the better the acceleration of the pivot-vertex technique.
Table 4 shows the percentage of HCSs counted in a combinatoric
manner. In Table 4, Dpivot has larger percentages than Ppivot. More-
over, Ppivot is more sensitive to the parameter 𝑠. This is because
Dpivot always has a pivot vertex at each node of the recursion tree,
while Ppivot depends on 𝑅, 𝐶 and 𝑠 as stated by Corollary 4.11.
Table 4 also shows that the HCSs with larger size are more easy to
count in a combinatoric way. With larger value of 𝑞, the condition
|𝑅 | = 𝑞 − 1 (line 2 in Algorithm 3) is harder to meet. In general, our
pivot-based algorithms enable a large number of HCSs to be counted
in a combinatoric manner. These results further confirm the high
efficiency of the proposed pivot-based solutions.

Memory overheads. Fig. 5 compares the memory costs of the
proposed algorithms on Amazon and Pokec given that 𝑠 = 1. For
other parameter settings and other datasets, the results are consistent.
The pivot-based approaches require more memory compared to
the listing-based solutions. This is because the recursive depth of
the pivot-based algorithms is often deeper than the listing-based
solutions, thus resulting in more space usages. However, we can
also note that the memory overheads of the pivot-based solutions are
still within the same order of magnitude as listing-based algorithms,
due to the fact that both the listing-based and pivot-based methods
are depth-first search algorithms which are typically space-efficient.
For example, when 𝑞 = 4 , Plist consumes 140 MB on Amazon and
Ppivot uses 394 MB on the same datasets.

Counting HCS with size in [ql, qr] simultaneously. As described
in Section 4.5, Dpivot and Ppivot can count HCS with size in a range
simultaneously. Table 5 shows the running time, where the column
𝑞𝑙 means the running time of counting only HCS with size 𝑞𝑙 . The
parameters are set as 𝑠 = 1, 𝑞𝑙 = 5 and 𝑞𝑟 = 20. As shown in Table 5,
The running time of counting [𝑞𝑙 , 𝑞𝑟] and counting only 𝑞𝑙 are within
the same order of magnitude. The results with other parameters are
similar. This is because counting [𝑞𝑙 , 𝑞𝑟] and counting only 𝑞𝑙 has
the same size of the search tree and only has difference in the leaves
nodes (as described in Algorithm 3 and Section 4.5). These results
further demonstrate the advantages of the pivot-based algorithms,
compared to the list-based algorithms.

Local counting. We compared the running time of global and local
counting in Table 6, with parameters 𝑠 = 1. Local counting includes
counting HCSs in each vertex and edge. In Table 6, we find that the
local-vertex counting is slightly slower than the globally counting.
This is because the computation of local-vertex counting only re-
quires scanning the vertices, as described in Section 4.5. However,
the local-edge counting needs to scan the edges, and since the num-
ber of edges is larger than the number of vertices, the running time
of local-edge counting is slower but still within the same order of
magnitude. For example, in Table 6 with 𝑞 = 7, local-edge counting
is at most 2.42× slower than global counting. These results indicate

Table 6: The running time of locally counting

q Networks
Running time (sec)

Dpivot Ppivot
global vertex edge global vertex edge

7

WikiV 11.3 11.9 21.7 29.6 30.1 58.4
Epinion 43.3 45.5 94.5 119.6 121.8 288.9
Amazon 0.8 0.8 1.2 1.8 1.8 2.2
Pokec 60.6 65.2 109.1 188.5 190.3 268.4

14

WikiV 3.0 4.7 7.0 4.7 4.6 6.8
Epinion 19.2 28.1 72.5 86.4 86.5 194.5
Amazon 0.1 0.1 0.1 0.1 0.1 0.1
Pokec 11.6 14.1 22.5 18.6 18.6 27.2

that Dpivot and Ppivot are very efficient in locally counting HCSs
for each vertex or edge.

5.3 Application 1 : HCS-based graph clustering
In this section, we show the application of the HCS counts for
motif-based graph clustering. One of the most popular metrics in
community detection is conductance [7, 27, 37, 54, 60, 69]. The
conductance is the ratio of the count of edges leaving the community
and the count of edges in the community. Similarly, the motif-based
conductance [7, 60] is the ratio of the count of motifs leaving the
community and the count of motifs in the community, which is

formulated as Φ(𝑆) = 𝐶𝑀 (𝑆 :𝑆)
𝑚𝑖𝑛 (𝐶𝑀 (𝑆),𝐶𝑀 (𝑆))

, where 𝑆 is the remainder

vertices of 𝑆 , 𝐶𝑀 (𝑆) is the count of the motif 𝑀 in 𝐺 (𝑆) and 𝐶𝑀 (𝑆 :
𝑆) is the count of the motif 𝑀 that contains both vertices in 𝑆 and 𝑆 .
Φ(𝑆) measures how well a community 𝑆 preserves the occurrences
of 𝑀 compared to its complement 𝑆 . A community with low motif-
based conductance means that it preserves the occurrences of the
motif 𝑀 well within the community.

To minimize the motif-based conductance Φ(𝑆), we can use the
classic spectral clustering algorithm, as suggested in previous studies
[7, 60]. Essentially, Φ(𝑆) can be viewed as a normalized cut, where
𝐶𝑀 (𝑆 : 𝑆) represents the count of motifs in the graph cut (𝑆 :
𝑆). To apply spectral clustering, we define a weight matrix 𝑊𝑀 ∈
𝑁 |𝑉 |× |𝑉 | , where (𝑊𝑀)𝑖 𝑗 is the count of motifs containing edge
(𝑖, 𝑗). Using this weight matrix, we can follow the same steps as the
classic spectral clustering algorithm to obtain clusters that minimize
the motif-based conductance Φ(𝑆) between them. This motif-based
spectral clustering approach has been shown to be very effective
in previous studies [7, 40, 60], in which the clique was used as
a motif. Similarly, we can use HCS as a motif to devise an HCS-
based spectral clustering algorithm by the local counting property of
HCSPivot as discussed in Section 4.5. With our HCSPivot, we can
get the weight matrix𝑊𝑀 efficiently.

Table 7 presents a comparison of the clustering performance
of our proposed HCS-based spectral clustering algorithm against
several state-of-the-art graph clustering algorithms, including clique-
based (3-clique and 4-clique) spectral clustering [7, 60], Louvain [5],
pSCAN [11], label propagation algorithm (LPA) [61], and Infomap
[23, 52]. We implement our spectral clustering algorithms using the
commonly-used scikit-learn Python package [48]. For other popular
algorithms, we use their open-source implementations that have been
thoroughly tested [5, 11, 23, 48, 52]. We evaluate the algorithms
on the email-Eu-core network downloaded from the SNAP project
[36], which contains 42 ground truth communities. Based on the
ground truth communities, we can apply 4 widely-used metrics,
including ARI [62], Purity [55], NMI [67], and 𝐹1 score, to evaluate
the clustering performance of different algorithms. Due to the space
limits, the detailed description of these metrics can be found in our
full version [39]. As shown in Table 7, our (3, 1)-dclique or (3, 1)-
plex model (when 𝑞 = 3 and 𝑠 = 1, (3, 1)-dclique and (3, 1)-plex are

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

Table 7: The results of HCS-based graph clustering

Methods Metrics
ARI Purity NMI F1

(3, 1)-dclique/plex 0.47 0.67 0.68 0.49
(4,1)-dclique 0.34 0.62 0.62 0.38

(4,1)-plex 0.33 0.63 0.63 0.36
3-clique 0.30 0.64 0.64 0.33
4-clique 0.23 0.59 0.59 0.27
Louvain 0.33 0.45 0.58 0.38
pSCAN 0.02 0.28 0.28 0.10

LPA 0.10 0.52 0.49 0.13
Infomap 0.28 0.52 0.62 0.33

identical) achieves the best clustering performance with all 4 metrics.
In general, both HCS and clique-based spectral clustering algorithms
(the first 5 rows) significantly outperform the other baselines to
identify real-world communities, and our HCS-based solutions can
further outperform clique-based spectral clustering algorithms [7,
60]. These results demonstrate the high effectiveness of the proposed
solutions in community detection applications.

5.4 Application 2 : HCS-based network analysis
The graph profile (GP) is a kind of characteristic vector of given
networks, which has a lot of applications in network analysis [3, 29,
43, 44, 68]. A nice property of GP is that the networks in the same
domain often have similar GPs [46, 71].

The subgraph ratio profile (SRP) is a well-known and widely used
GP [46]. The SRP is a vector that quantifies the relative significance
of a sequence of subgraphs, denoted by {𝑀1, 𝑀2, ...}, where the 𝑖𝑡ℎ
entry in the vector corresponds to the normalized count of a specific
subgraph 𝑀𝑖 . This normalization involves subtracting the count of
𝑀𝑖 in a randomly generated null graph from that of the original
graph, followed by a scaling [46]. In our study, we use a null graph
model based on the algorithm proposed in [35], which preserves
the core number of the original graph. The sequence of subgraphs
{𝑀1, 𝑀2, ...} is composed of six types of connected subgraphs with
a size of four, following the methodology of [46].

HCS-based graph profile. We introduce a novel graph profile,
termed the HCS-based graph profile (HGP), which is constructed
based on the count of HCS. The HGP is a vector where the 𝑖𝑡ℎ entry
represents the ratio between the count of cliques and HCSs with
size 𝑞𝑖 . Since cliques are a special type of HCS, this ratio can be
interpreted as the probability of an HCS being a clique, which char-
acterizes the convergence behavior of the graphs. Since HCSPivot
can count HCSs with size in a range [𝑞𝑙 , 𝑞𝑟] simultaneously (Sec-
tion 4.5), we can compute HGP efficiently.

In Fig. 6, we compare the SRPs and HGPs on the networks in three
domains [36]. We set the sequence of size of HGP as {4, 5, ..., 20}.
Fig. 6(a) plots the SRPs and HGPs on 3 Amazon networks. Fig. 6(b),
Fig. 6(c) and Fig. 6(d) plot the SRPs, dclique-based HGPs and plex-
base HGPs respectively on 6 collaboration and 3 social networks.
Similar to SRPs, HGPs of the networks in the same domain have
the same change tendency. For example, on the Amazon networks
in Fig. 6(a), both Ama0312, Ama0505 and Ama0601 have exactly
the same shapes of HGPs and SRPs. The same performance of SRP
and HGP implies that the proposed HGP can characterize the net-
work properties in the same domain as SRP. When the networks are
in different domains, we find that HGP performs better than SRP.
Specifically, in Fig. 6(b), SRP cannot separate the collaboration and
social networks. However, in Fig. 6(c) and Fig. 6(d), HGP separates
the two kinds of networks clearly. As a result, HGP is a better GP
than SRP when there exist networks in multiple domains. These
results demonstrate the high effectiveness of the proposed HGP to
characterize network properties.

1 2 3 4 5 6 7 8
subgraphs / q

0.00

0.05

0.10

0.15

0.20

0.25

SR
P

/ H
G

P

SRP0312
SRP0505
SRP0601

Dclique0312
Dclique0505
Dclique0601

Plex0312
Plex0505
Plex0601

(a) Amazon newtorks

1 2 3 4 5 6
subgraphs

-0.2

-0.1

0.0

0.1

0.2

SR
P

AstroPh
CondMat
GrQc

HepPh
HepTh
DBLP

WikVote
eroEmail
euaEmail

(b) SRPs of the collaboration and social
networks

4 6 8 10 12 14 16 18 20 22
q

0.0

0.2

0.4

0.6

0.8

1.0

H
G
P-
dc
liq
ue

AstroPh
CondMat
GrQc

HepPh
HepTh
DBLP

WikVote
euaEmail
eroEmail

(c) dclique-based HGPs of collabora-
tion and social networks

4 6 8 10 12 14 16 18 20 22
q

0.0

0.2

0.4

0.6

0.8

1.0

H
G
P-
pl
ex

AstroPh
CondMat
GrQc

HepPh
HepTh
DBLP

WikVote
euaEmail
eroEmail

(d) plex-based HGPs of collaboration
and social networks

Figure 6: (1) Fig. 6(a) are SRPs and HGPs on the Amazon net-
works. The Amazon0312, Amazon0505 and Amazon0601 have
the same SRPs and HGPs. (2) Fig. 6(b), Fig. 6(c) and 6(d) are
SRPs and HGPs on 6 collaboration (from AstroPh, CondMat to
DBLP) and 3 social (from WikVote to eroEmail) networks. In
Fig. 6(b), the networks in the two domains have similar SRPs.
In Fig. 6(c) and Fig. 6(d), the networks in the same domain still
have similar HGPs, but the HGPs of the networks in the two
domains are different.

6 RELATED WORK
Subgraph Counting. Our work is related to the subgraph count-
ing problem which includes general subgraph counting and specific
subgraph counting [51]. The recent exact algorithms for general sub-
graphs counting [2, 30, 47, 50] can compute the count efficiently, but
they always have a small size constraint. To overcome the hardness,
sampling-based approximate algorithms [1, 8, 34, 65] for general
subgraph counting are well studied. Recently, machine learning tech-
niques are also applied for subgraph counting [15, 63, 73]. However,
these method are often not very accurate and also cannot provide a
theoretical guarantee of the estimated counts.

Despite the general algorithms, there are a lot of algorithms de-
signed for counting specific important subgraphs, where the most
representative one is 𝑘-clique. The first algorithm for 𝑘-clique count-
ing was introduced by [16], which is a listing-based solution. To
improve the efficiency, some ordering based algorithms [22, 38]
are designed. Instead of listing, Jain and Seshadhri [33] propose an
elegant algorithm PIVOTER, which can count all 𝑘-cliques without
listing them, based on the classic maximal clique enumeration al-
gorithm [9]. There also exist several approximate clique counting
algorithms [32, 70], which are often more efficient but cannot obtain
the exact counts. All these algorithms are tailed to the problem of
𝑘-clique counting and cannot be applied to the general HCS counting
problem. In addition, we also note that the complexity of the heredi-
tary subgraph counting problem was investigated in [26]. However,
no specific counting algorithm was proposed in [26].

Counting Cohesive Subgraphs with Hereditary Properties

Maximal Hereditary Subgraph Enumeration. Our work is also
related to the problem of maximal hereditary subgraph enumer-
ation, the goal of which is to enumerate all maximal hereditary
subgraphs. The widely studied maximal hereditary subgraph model
is the maximal clique. The most popular algorithm for maximal
clique enumeration is the classic pivot-based Bron-Kerbosch algo-
rithm [9, 58]. Since clique model is often too restrictive, several
relaxed clique models include 𝑠-defective clique and 𝑠-plex are pro-
posed [14, 20, 21, 28, 57, 72, 75], which also satisfy the hereditary
property. Recently, several pivot-based solutions for enumerating
maximal 𝑠-defective cliques and maximal 𝑠-plex were proposed
[20, 21, 66], which generalize the classic pivoting technique pro-
posed for maximal clique enumeration [58]. We also note that [17]
developed a general algorithm to enumerate all maximal hereditary
subgraph based on the reverse search framework [4]. However, this
algorithm is often much slower than the pivot-based algorithms when
processing real-world graphs. All the above mentioned algorithms
are tailored to maximal hereditary subgraph enumeration, and they
cannot be used for HCS counting. This is because an HCS can be lo-
cated in many maximal hereditary subgraphs; and it is very difficult
to reduce the repeated counts when using the maximal hereditary
subgraphs to count HCSs.

7 CONCLUSION
In this work, we address a new problem of counting hereditary cohe-
sive subgraphs (HCSs) in a graph. To tackle this problem, we first
propose a listing-based framework with several carefully-designed
pruning techniques to count the HCSs. To further improve the ef-
ficiency, we then develop a novel pivot-based framework which
counts most HCSs in a combinatorial manner without the need for
exhaustive listing. Based on our two frameworks, we devise sev-
eral specific algorithms to count the 𝑠-defective cliques and 𝑠-plexes
in a graph, which are two relaxed clique models and also satisfy
the hereditary property. We conduct comprehensive experiments
on 8 real-life networks to evaluate the efficiency of our algorithms.
The results reveal that the pivot-based solutions exhibit significantly
higher performance, being up to 7 orders of magnitude faster than the
listing-based solution. In addition, we also evaluate the performance
of our methods in graph clustering and network characterization
applications, and the results demonstrate the high effectiveness of
the proposed solutions.

REFERENCES
[1] Nesreen K. Ahmed, Nick G. Duffield, Theodore L. Willke, and Ryan A. Rossi.

2017. On Sampling from Massive Graph Streams. Proc. VLDB Endow. 10, 11
(2017), 1430–1441.

[2] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G. Duffield. 2015.
Efficient Graphlet Counting for Large Networks. In ICDM. 1–10.

[3] Uri Alon. 2006. An introduction to systems biology: design principles of biological
circuits. Chapman and Hall/CRC.

[4] David Avis and Komei Fukuda. 1996. Reverse Search for Enumeration. Discret.
Appl. Math. 65, 1-3 (1996), 21–46.

[5] Thomas Aynaud. 2020. python-louvain x.y: Louvain algorithm for community
detection. https://github.com/taynaud/python-louvain.

[6] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores
Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[7] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163–166.

[8] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro
Panconesi. 2018. Motif Counting Beyond Five Nodes. ACM Trans. Knowl. Discov.
Data 12, 4 (2018), 48:1–48:25.

[9] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected
Graph (Algorithm 457). Commun. ACM 16, 9 (1973), 575–576.

[10] Mauro Brunato, Holger H. Hoos, and Roberto Battiti. 2007. On Effectively
Finding Maximal Quasi-cliques in Graphs. In LION (Lecture Notes in Computer
Science, Vol. 5313). 41–55.

[11] Lijun Chang, Wei Li, Lu Qin, Wenjie Zhang, and Shiyu Yang. 2017. pSCAN:
Fast and Exact Structural Graph Clustering. IEEE Trans. Knowl. Data Eng. 29, 2
(2017), 387–401.

[12] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation Over Large
Sparse Graphs. Springer Cham.

[13] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa
Liang. 2013. Efficiently computing k-edge connected components via graph
decomposition. In SIGMOD. 205–216.

[14] Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and Mingyu Xiao. 2021. Computing
maximum k-defective cliques in massive graphs. Comput. Oper. Res. 127 (2021),
105131.

[15] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can Graph
Neural Networks Count Substructures?. In NeurIPS.

[16] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing
Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.

[17] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. 2008. Generating all maximal
induced subgraphs for hereditary and connected-hereditary graph properties. J.
Comput. Syst. Sci. 74, 7 (2008), 1147–1159.

[18] Seshadhri Comandur and Srikanta Tirthapura. 2019. Scalable Subgraph Counting:
The Methods Behind The Madness. In WWW. 1317–1318.

[19] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea
Marino, and Luca Versari. 2018. D2K: Scalable Community Detection in Massive
Networks via Small-Diameter k-Plexes. In KDD. 1272–1281.

[20] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, and Guoren Wang. 2023. Maximal
Defective Clique Enumeration. Proc. ACM Manag. Data 1, 1 (2023), 77:1–77:26.

[21] Qiangqiang Dai, Rong-Hua Li, Hongchao Qin, Meihao Liao, and Guoren Wang.
2022. Scaling Up Maximal k-plex Enumeration. In CIKM. 345–354.

[22] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in
Sparse Real-World Graphs. In WWW. 589–598.

[23] Daniel Edler, Anton Holmgren, and Martin Rosvall. 2023. The MapEquation
software package. https://mapequation.org.

[24] Alessandro Epasto, Silvio Lattanzi, Vahab S. Mirrokni, Ismail Sebe, Ahmed
Taei, and Sunita Verma. 2015. Ego-net Community Mining Applied to Friend
Suggestion. Proc. VLDB Endow. 9, 4 (2015), 324–335.

[25] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing All Maximal
Cliques in Large Sparse Real-World Graphs. ACM J. Exp. Algorithmics 18 (2013).

[26] Jacob Focke and Marc Roth. 2022. Counting small induced subgraphs with
hereditary properties. In STOC. 1543–1551.

[27] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[28] Jian Gao, Zhenghang Xu, Ruizhi Li, and Minghao Yin. 2022. An Exact Algorithm
with New Upper Bounds for the Maximum k-Defective Clique Problem in Massive
Sparse Graphs. In AAAI. 10174–10183.

[29] Roger Guimera, Marta Sales-Pardo, and Luis AN Amaral. 2007. Classes of
complex networks defined by role-to-role connectivity profiles. Nature physics 3,
1 (2007), 63–69.

[30] Tomaz Hocevar and Janez Demsar. 2014. A combinatorial approach to graphlet
counting. Bioinform. 30, 4 (2014), 559–565.

[31] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Query-
ing k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.

[32] Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating
Clique Counts Using Turán’s Theorem. In WWW. 441–449.

[33] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique
Counting. In WSDM. 268–276.

[34] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and
Provable Method for Estimating 4-Vertex Subgraph Counts. In WWW. 495–505.

[35] Katherine Van Koevering, Austin R. Benson, and Jon M. Kleinberg. 2021. Ran-
dom Graphs with Prescribed K-Core Sequences: A New Null Model for Network
Analysis. In WWW ’21, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang,
and Leila Zia (Eds.). 367–378.

[36] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[37] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2008.
Statistical properties of community structure in large social and information
networks. In WWW. 695–704.

[38] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.
2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. 13, 11 (2020),
2536–2548.

[39] Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren
Wang. 2024. Counting Cohesive Subgraphs with Hereditary Properties. In Full
version:. https://github.com/LightWant/HCS

[40] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. 2018. Community detection in
complex networks via clique conductance. Scientific reports 8, 1 (2018), 5982.

[41] R Duncan Luce. 1950. Connectivity and generalized cliques in sociometric group
structure. Psychometrika 15, 2 (1950), 169–190.

[42] Silvano Martello, David Pisinger, and Paolo Toth. 1999. Dynamic Programming
and Strong Bounds for the 0-1 Knapsack Problem. Management Science 45, 3
(1999), 414–424.

[43] L-E Martinet, MA Kramer, W Viles, LN Perkins, E Spencer, CJ Chu, SS Cash,
and ED Kolaczyk. 2020. Robust dynamic community detection with applications
to human brain functional networks. Nature communications 11, 1 (2020), 2785.

[44] Oliver Mason and Mark Verwoerd. 2007. Graph theory and networks in biology.
IET systems biology 1, 2 (2007), 89–119.

[45] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering
and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[46] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of evolved and

https://github.com/taynaud/python-louvain
https://mapequation.org
http://snap.stanford.edu/data
https://github.com/LightWant/HCS

Rong-Hua Li, Xiaowei Ye, Fusheng Jin, Yu-Ping Wang, Ye Yuan, and Guoren Wang

designed networks. Science 303, 5663 (2004), 1538–1542.
[47] Mark Ortmann and Ulrik Brandes. 2017. Efficient orbit-aware triad and quad

census in directed and undirected graphs. Appl. Netw. Sci. 2 (2017), 13.
[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[49] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-
cliques. In KDD. 228–238.

[50] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: Efficiently
Counting All 5-Vertex Subgraphs. In WWW. 1431–1440.

[51] Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David Aparício, and Fernando
M. A. Silva. 2022. A Survey on Subgraph Counting: Concepts, Algorithms, and
Applications to Network Motifs and Graphlets. ACM Comput. Surv. 54, 2 (2022),
28:1–28:36.

[52] Martin Rosvall, Daniel Axelsson, and Carl T Bergstrom. 2009. The map equation.
The European Physical Journal Special Topics 178, 1 (2009), 13–23.

[53] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.
Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In
WWW. 927–937.

[54] Satu Elisa Schaeffer. 2007. Graph clustering. Computer science review 1, 1
(2007), 27–64.

[55] Hinrich Schutze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Cambridge University Press.

[56] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[57] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization of
the clique concept. Journal of Mathematical sociology 6, 1 (1978), 139–154.

[58] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time
complexity for generating all maximal cliques and computational experiments.
Theor. Comput. Sci. 363, 1 (2006), 28–42.

[59] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In
WWW. 1122–1132.

[60] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.
Scalable Motif-aware Graph Clustering. In WWW. 1451–1460.

[61] Réka Albert Usha Nandini Raghavan and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Phys. Rev.
E 76, 036106 (2007).

[62] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2009. Information theoretic
measures for clusterings comparison: is a correction for chance necessary?. In
Proceedings of the 26th annual international conference on machine learning.
1073–1080.

[63] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang.
2022. Neural Subgraph Counting with Wasserstein Estimator. In SIGMOD. 160–
175.

[64] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.
Proc. VLDB Endow. 5, 9 (2012), 812–823.

[65] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng Cheng,
John C. S. Lui, Don Towsley, Jing Tao, and Xiaohong Guan. 2018. MOSS-5:
A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs.
IEEE Trans. Knowl. Data Eng. 30, 1 (2018), 73–86.

[66] Zhengren Wang, Yi Zhou, Mingyu Xiao, and Bakhadyr Khoussainov. 2022. List-
ing Maximal k-Plexes in Large Real-World Graphs. In WWW. 1517–1527.

[67] Ian H Witten, Eibe Frank, Mark A Hall, Christopher J Pal, and MINING DATA.
2005. Practical machine learning tools and techniques. In Data Mining, Vol. 2.

[68] Xiaoke Xu, Jie Zhang, and Michael Small. 2008. Superfamily phenomena and mo-
tifs of networks induced from time series. Proceedings of the National Academy
of Sciences 105, 50 (2008), 19601–19605.

[69] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-
nities based on ground-truth. In KDD. 1–8.

[70] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren Wang.
2022. Lightning Fast and Space Efficient k-clique Counting. In WWW. 1191–
1202.

[71] Hao Yin, Austin R. Benson, and Jure Leskovec. 2017. Higher-order clustering in
networks. Physical Review E 97, 5 (2017), 052306.

[72] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. 2006. Pre-
dicting interactions in protein networks by completing defective cliques. Bioin-
form. 22, 7 (2006), 823–829.

[73] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A
Learned Sketch for Subgraph Counting. In SIGMOD. 2142–2155.

[74] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin
Li. 2012. Finding maximal k-edge-connected subgraphs from a large graph. In
EDBT. 480–491.

[75] Yi Zhou, Shan Hu, Mingyu Xiao, and Zhang-Hua Fu. 2021. Improving Maximum
k-plex Solver via Second-Order Reduction and Graph Color Bounding. In AAAI.
12453–12460.

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Listing-based Solutions
	3.1 A general listing framework HCSList
	3.2 Listing-based s-dclique counting
	3.3 Listing-based s-plex counting

	4 The pivot-based solutions
	4.1 Warm up: a new listing strategy
	4.2 A general pivot-based counting framework
	4.3 Pivot-based s-dclique counting
	4.4 Pivot-based s-plex counting
	4.5 Discussions

	5 Experiments
	5.1 Experimental setup
	5.2 Performance studies
	5.3 Application 1 : HCS-based graph clustering
	5.4 Application 2 : HCS-based network analysis

	6 Related work
	7 Conclusion
	References

